Question Number 125800 by TITA last updated on 13/Dec/20
Commented by TITA last updated on 13/Dec/20
$$\mathrm{prove} \\ $$
Commented by liberty last updated on 14/Dec/20
$${b}^{\mathrm{2}} {x}^{\mathrm{2}} −{a}^{\mathrm{2}} \left({mx}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} −{a}^{\mathrm{2}} \left({m}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{mcx}+{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} {m}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {mcx}−\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${D}=\mathrm{0}\:\Rightarrow\:\mathrm{4}{a}^{\mathrm{4}} {m}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} {m}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{4}} {m}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} {a}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{4}} −{a}^{\mathrm{4}} {m}^{\mathrm{2}} {c}^{\mathrm{2}} −{a}^{\mathrm{4}} {m}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{b}^{\mathrm{2}} {a}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{4}} −{a}^{\mathrm{4}} {m}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{b}^{\mathrm{2}} −{a}^{\mathrm{2}} {m}^{\mathrm{2}} \right)=\mathrm{0}\:;\:{a}^{\mathrm{2}} \neq\:\mathrm{0}\:\wedge{b}^{\mathrm{2}} \neq\mathrm{0} \\ $$$$\Rightarrow{c}^{\mathrm{2}} \:={a}^{\mathrm{2}} {m}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\wedge\:{c}\:=\:\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:.\: \\ $$
Commented by liberty last updated on 14/Dec/20
$${other}\:{way}\:\Rightarrow\:{gradient}\:{tangent}\:{line}\: \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{yy}'}{{b}^{\mathrm{2}} }\:=\:\mathrm{0}\:;\:{b}^{\mathrm{2}} {x}={a}^{\mathrm{2}} {y}.{y}' \\ $$$$\Rightarrow{y}'\:=\:\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}}\:=\:{m}\:\Rightarrow{x}=\frac{{ma}^{\mathrm{2}} {y}}{{b}^{\mathrm{2}} } \\ $$$${substitute}\:{in}\:{to}\:{hyperbola} \\ $$$$\frac{\frac{{m}^{\mathrm{2}} {a}^{\mathrm{4}} {y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }}{{a}^{\mathrm{2}} }\:−\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1}\:;\:\frac{\left({m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }=\mathrm{1} \\ $$$${y}^{\mathrm{2}} =\frac{{b}^{\mathrm{4}} }{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\rightarrow\begin{cases}{{y}=\frac{{b}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}}\\{{y}=−\frac{{b}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}}\end{cases} \\ $$$${contact}\:{point}\:\Rightarrow{x}=\frac{{ma}^{\mathrm{2}} \left(−\frac{{b}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{c}^{\mathrm{2}} }}\right)}{{b}^{\mathrm{2}} }=−\frac{{ma}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }} \\ $$$${thus}\:−\frac{{b}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\:=\:\frac{−{m}^{\mathrm{2}} {a}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\:+\:{c}\: \\ $$$$\:{c}\:=\:\frac{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\:=\:\sqrt{{m}^{\mathrm{2}} {a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\: \\ $$$$ \\ $$
Commented by TITA last updated on 14/Dec/20
$$\mathrm{thamks}\:\mathrm{guys} \\ $$
Commented by TITA last updated on 14/Dec/20
$$\mathrm{thanks} \\ $$
Answered by TITA last updated on 13/Dec/20
$$\mathrm{please}\:\mathrm{help} \\ $$
Answered by peter frank last updated on 14/Dec/20
$$\mathrm{y}=\mathrm{mx}+\mathrm{c} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }−\frac{\left(\mathrm{mx}+\mathrm{c}\right)^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{put}\:\:\mathrm{discrimint}\:=\mathrm{0} \\ $$$$… \\ $$
Answered by peter frank last updated on 14/Dec/20