Menu Close

Question-125800




Question Number 125800 by TITA last updated on 13/Dec/20
Commented by TITA last updated on 13/Dec/20
prove
prove
Commented by liberty last updated on 14/Dec/20
b^2 x^2 −a^2 (mx+c)^2 =a^2 b^2   b^2 x^2 −a^2 (m^2 x^2 +2mcx+c^2 )−a^2 b^2 =0  (b^2 −a^2 m^2 )x^2 −2a^2 mcx−(a^2 c^2 +a^2 b^2 )=0  D=0 ⇒ 4a^4 m^2 c^2 +4(b^2 −a^2 m^2 )(a^2 c^2 +a^2 b^2 )=0  ⇒a^4 m^2 c^2 +b^2 a^2 c^2 +a^2 b^4 −a^4 m^2 c^2 −a^4 m^2 b^2 =0  ⇒b^2 a^2 c^2 +a^2 b^4 −a^4 m^2 b^2 =0  ⇒a^2 b^2 (c^2 +b^2 −a^2 m^2 )=0 ; a^2 ≠ 0 ∧b^2 ≠0  ⇒c^2  =a^2 m^2 −b^2  ∧ c = (√(a^2 m^2 −b^2 )) .
b2x2a2(mx+c)2=a2b2b2x2a2(m2x2+2mcx+c2)a2b2=0(b2a2m2)x22a2mcx(a2c2+a2b2)=0D=04a4m2c2+4(b2a2m2)(a2c2+a2b2)=0a4m2c2+b2a2c2+a2b4a4m2c2a4m2b2=0b2a2c2+a2b4a4m2b2=0a2b2(c2+b2a2m2)=0;a20b20c2=a2m2b2c=a2m2b2.
Commented by liberty last updated on 14/Dec/20
other way ⇒ gradient tangent line   ((2x)/a^2 )−((2yy′)/b^2 ) = 0 ; b^2 x=a^2 y.y′  ⇒y′ = ((b^2 x)/(a^2 y)) = m ⇒x=((ma^2 y)/b^2 )  substitute in to hyperbola  (((m^2 a^4 y^2 )/b^4 )/a^2 ) − (y^2 /b^2 ) = 1 ; (((m^2 a^2 −b^2 )y^2 )/b^4 )=1  y^2 =(b^4 /(m^2 a^2 −b^2 )) → { ((y=(b^2 /( (√(m^2 a^2 −b^2 )))))),((y=−(b^2 /( (√(m^2 a^2 −b^2 )))))) :}  contact point ⇒x=((ma^2 (−(b^2 /( (√(m^2 a^2 −c^2 ))))))/b^2 )=−((ma^2 )/( (√(m^2 a^2 −b^2 ))))  thus −(b^2 /( (√(m^2 a^2 −b^2 )))) = ((−m^2 a^2 )/( (√(m^2 a^2 −b^2 )))) + c    c = ((m^2 a^2 −b^2 )/( (√(m^2 a^2 −b^2 )))) = (√(m^2 a^2 −b^2 ))
otherwaygradienttangentline2xa22yyb2=0;b2x=a2y.yy=b2xa2y=mx=ma2yb2substituteintohyperbolam2a4y2b4a2y2b2=1;(m2a2b2)y2b4=1y2=b4m2a2b2{y=b2m2a2b2y=b2m2a2b2contactpointx=ma2(b2m2a2c2)b2=ma2m2a2b2thusb2m2a2b2=m2a2m2a2b2+cc=m2a2b2m2a2b2=m2a2b2
Commented by TITA last updated on 14/Dec/20
thamks guys
thamksguys
Commented by TITA last updated on 14/Dec/20
thanks
thanks
Answered by TITA last updated on 13/Dec/20
please help
pleasehelp
Answered by peter frank last updated on 14/Dec/20
y=mx+c  (x^2 /a^2 )−(y^2 /b^2 )=1  (x^2 /a^2 )−(((mx+c)^2 )/b^2 )=1  put  discrimint =0  ...
y=mx+cx2a2y2b2=1x2a2(mx+c)2b2=1putdiscrimint=0
Answered by peter frank last updated on 14/Dec/20

Leave a Reply

Your email address will not be published. Required fields are marked *