Menu Close

Question-125862




Question Number 125862 by mathdave last updated on 14/Dec/20
Answered by bramlexs22 last updated on 14/Dec/20
(√((7^(2012) (49−1))/(12))) = (√(7^(2012) ×4))   = 2×7^(1006)  = a×7^b   a=2 ∧ b=1006
$$\sqrt{\frac{\mathrm{7}^{\mathrm{2012}} \left(\mathrm{49}−\mathrm{1}\right)}{\mathrm{12}}}\:=\:\sqrt{\mathrm{7}^{\mathrm{2012}} ×\mathrm{4}} \\ $$$$\:=\:\mathrm{2}×\mathrm{7}^{\mathrm{1006}} \:=\:{a}×\mathrm{7}^{{b}} \\ $$$${a}=\mathrm{2}\:\wedge\:{b}=\mathrm{1006} \\ $$
Answered by talminator2856791 last updated on 15/Dec/20
 (√((7^(2014) −7^(2012) )/(12))) = a(7^b )   (√((7^(2014) −7^(2012) )/(12))) = (√((49(7^(2012) )−7^(2012) )/(12)))   = (√((7^(2012) (49−1))/(12))) = (√((7^(2012) ×48)/(12)))   = (√((7^(2012) ×12×4)/(12))) = (√(4×7^(2012) ))   = 2×7^(1006)  = 2(7^(1006) )   a = 2(7^k )   b = 7^(1006−k)  , k ∈ N
$$\:\sqrt{\frac{\mathrm{7}^{\mathrm{2014}} −\mathrm{7}^{\mathrm{2012}} }{\mathrm{12}}}\:=\:{a}\left(\mathrm{7}^{{b}} \right) \\ $$$$\:\sqrt{\frac{\mathrm{7}^{\mathrm{2014}} −\mathrm{7}^{\mathrm{2012}} }{\mathrm{12}}}\:=\:\sqrt{\frac{\mathrm{49}\left(\mathrm{7}^{\mathrm{2012}} \right)−\mathrm{7}^{\mathrm{2012}} }{\mathrm{12}}} \\ $$$$\:=\:\sqrt{\frac{\mathrm{7}^{\mathrm{2012}} \left(\mathrm{49}−\mathrm{1}\right)}{\mathrm{12}}}\:=\:\sqrt{\frac{\mathrm{7}^{\mathrm{2012}} ×\mathrm{48}}{\mathrm{12}}} \\ $$$$\:=\:\sqrt{\frac{\mathrm{7}^{\mathrm{2012}} ×\mathrm{12}×\mathrm{4}}{\mathrm{12}}}\:=\:\sqrt{\mathrm{4}×\mathrm{7}^{\mathrm{2012}} } \\ $$$$\:=\:\mathrm{2}×\mathrm{7}^{\mathrm{1006}} \:=\:\mathrm{2}\left(\mathrm{7}^{\mathrm{1006}} \right) \\ $$$$\:{a}\:=\:\mathrm{2}\left(\mathrm{7}^{{k}} \right) \\ $$$$\:{b}\:=\:\mathrm{7}^{\mathrm{1006}−{k}} \:,\:{k}\:\in\:\mathbb{N}\: \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *