Menu Close

Question-125873




Question Number 125873 by Mathgreat last updated on 14/Dec/20
Answered by MJS_new last updated on 15/Dec/20
t=sin 2x =2sin x cos x =2sin x (√(1−sin^2  x)) ⇒  ⇒ sin x = { ((0≤x≤(π/4); ((√(1+t))/2)−((√(1−t))/2))),(((π/4)≤x≤(π/2); ((√(1+t))/2)+((√(1−t))/2))) :}  → dx= { ((dt/(2(√(1+t))(√(1−t))))),((−(dt/(2(√(1+t))(√(1−t)))))) :}  ∫_0 ^(π/4) ((sin x)/((1+(√(sin 2x)))^2 ))dx=∫_0 ^1 (dt/(4(1+(√t))^2 (√(1−t))))−∫_0 ^1 (dt/(4(1+(√t))^2 (√(1+t))))  ∫_(π/4) ^(π/2) ((sin x)/((1+(√(sin 2x)))^2 ))dx=∫_0 ^1 (dt/(4(1+(√t))^2 (√(1−t))))+∫_0 ^1 (dt/(4(1+(√t))^2 (√(1+t))))  ⇒  ∫_0 ^(π/2) ((sin x)/((1+(√(sin 2x)))^2 ))dx=∫_0 ^1 (dt/(2(1+(√t))^2 (√(1−t))))=       [u=((1+(√(1−t)))/( (√t))) ⇔ t=((4u^2 )/((u^2 +1)^2 )) → dt=−((2t^(3/2) (√(1−t)))/(1+(√(1−t))))]  =4∫_1 ^∞ (u/((u+1)^4 ))du=−(2/3)[((3u+1)/((u+1)^3 ))]_1 ^∞ =(1/3)
t=sin2x=2sinxcosx=2sinx1sin2xsinx={0xπ4;1+t21t2π4xπ2;1+t2+1t2dx={dt21+t1tdt21+t1tπ40sinx(1+sin2x)2dx=10dt4(1+t)21t10dt4(1+t)21+tπ2π4sinx(1+sin2x)2dx=10dt4(1+t)21t+10dt4(1+t)21+tπ20sinx(1+sin2x)2dx=10dt2(1+t)21t=[u=1+1ttt=4u2(u2+1)2dt=2t3/21t1+1t]=41u(u+1)4du=23[3u+1(u+1)3]1=13

Leave a Reply

Your email address will not be published. Required fields are marked *