Menu Close

Question-125960




Question Number 125960 by AST last updated on 26/Sep/22
Answered by mahdipoor last updated on 16/Dec/20
 { ((a^2 +b^2 =∣a∣^2 +∣b∣^2 )),((2ab≤2∣a∣.∣b∣)) :}  ⇒a^2 +b^2 +2ab≤∣a∣^2 +∣b∣^2 +2∣a∣.∣b∣  ⇒(a+b)^2 ≤(∣a∣+∣b∣)^2   ⇒∣a+b∣≤∣a∣+∣b∣
{a2+b2=∣a2+b22ab2a.ba2+b2+2ab⩽∣a2+b2+2a.b(a+b)2(a+b)2⇒∣a+b∣⩽∣a+b
Commented by mahdipoor last updated on 16/Dec/20
 x^2 ≤y^2  ⇒∣x∣≤∣y∣
x2y2⇒∣x∣⩽∣y
Commented by mahdipoor last updated on 16/Dec/20
in my ans;x=a+b   y=∣a∣+∣b∣  ∣x∣=∣a+b∣   ∣y∣=∣∣a∣+∣b∣∣=∣a∣+∣b∣
inmyans;x=a+by=∣a+bx∣=∣a+by∣=∣∣a+b∣∣=∣a+b
Answered by arcana last updated on 19/Dec/20
using −∣a∣≤a≤∣a∣ and              −∣b∣≤b≤∣b∣,  then             −∣a∣−∣b∣≤a+b≤∣a∣+∣b∣            −(∣a∣+∣b∣)≤a+b≤∣a∣+∣b∣  ⇒          ∣a+b∣≤∣a∣+∣b∣
usinga∣⩽a⩽∣aandb∣⩽b⩽∣b,thenab∣⩽a+b⩽∣a+b(a+b)a+b⩽∣a+ba+b∣⩽∣a+b

Leave a Reply

Your email address will not be published. Required fields are marked *