Menu Close

Question-126056




Question Number 126056 by TITA last updated on 16/Dec/20
Commented by TITA last updated on 16/Dec/20
please help
pleasehelp
Answered by Olaf last updated on 16/Dec/20
((x^x −1)/(ln(x+1))) = ((e^(xlnx) −1)/(ln(x+1)))  La limite en 0^+  est de la forme (0^+ /0^+ ).  C′est une forme indeterminee.  On utilise la regle de l′hopital :  lim_(x→0^+ ) ((f(x))/(g(x))) = lim_(x→0^+ ) ((f′(x))/(g′(x)))  donc on cherche :  lim_(x→0^+ )  (((1.lnx+x.(1/x))e^(xlnx) )/(1/(x+1)))  lim_(x→0^+ )  (x+1)(lnx+1)e^(xlnx)   de la forme 1×(−∞)×1 donc −∞
xx1ln(x+1)=exlnx1ln(x+1)Lalimiteen0+estdelaforme0+0+.Cestuneformeindeterminee.Onutiliselaregledelhopital:limx0+f(x)g(x)=limx0+f(x)g(x)donconcherche:limx0+(1.lnx+x.1x)exlnx1/(x+1)limx0+(x+1)(lnx+1)exlnxdelaforme1×()×1donc
Answered by Dwaipayan Shikari last updated on 16/Dec/20
lim_(x→0^+ ) ((e^(xlogx) −1)/(log(x+1)))=((1+xlog(x)−1)/x)       lim_(x→0)  log(x+1)=x and e^x =x+1  =log(x)→−∞
limx0+exlogx1log(x+1)=1+xlog(x)1xlimx0log(x+1)=xandex=x+1=log(x)
Answered by 676597498 last updated on 17/Dec/20
as x→0  ln(x+1)→x−(x^2 /(2!))+ξ(x)  lim_(x→0^+ ) ((x^x −1)/(ln(x+1)))=lim_(x→0^+ ) ((x^x −1)/(x(1−(x/2))))  =lim_(x→0^+ ) ((x^(x−1) −(1/x))/(1−(x/2))) = −∞
asx0ln(x+1)xx22!+ξ(x)limx0+xx1ln(x+1)=limx0+xx1x(1x2)=limx0+xx11x1x2=

Leave a Reply

Your email address will not be published. Required fields are marked *