Menu Close

Question-126632




Question Number 126632 by BHOOPENDRA last updated on 22/Dec/20
Commented by BHOOPENDRA last updated on 22/Dec/20
thanku sir
thankusir
Answered by Ar Brandon last updated on 22/Dec/20
In polar coordinates;   { ((x=rcosθ),(r≥0)),((y=rsinθ),(θ∈[0,2π])) :}  1≤x^2 +y^2 ≤4 ⇒ 1≤r^2 ≤4 ⇒ 1≤r≤2  x≤0 ⇒ rcosθ≤0 ⇒ cosθ≤0 ⇒ θ∈[(π/2),((3π)/2)]  I=∫∫_R (x+y)dA     =∫_((3π)/2) ^(π/2) ∫_1 ^2 r(rcosθ+rsinθ)drdθ     =∫_((3π)/2) ^(π/2) ∫_1 ^2 r^2 (cosθ+sinθ)drdθ     =[(r^3 /3)]_1 ^2 [sinθ−cosθ]_((3π)/2) ^(π/2)      =((8/3)−(1/3))(1−−1)=((14)/3)
Inpolarcoordinates;{x=rcosθr0y=rsinθθ[0,2π]1x2+y241r241r2x0rcosθ0cosθ0θ[π2,3π2]I=R(x+y)dA=3π2π212r(rcosθ+rsinθ)drdθ=3π2π212r2(cosθ+sinθ)drdθ=[r33]12[sinθcosθ]3π2π2=(8313)(11)=143
Answered by mathmax by abdo last updated on 22/Dec/20
A =∫∫_R (x+y)dxdy   with R ={(x,y)/1≤x^2  +y^2  ≤4 and x≤0}  we use the diffeomorphism  { ((x=rcosθ)),((y=rsinθ)) :}  1≤x^2  +y^2 ≤4 ⇒1≤r^2  ≤4 ⇒1≤r≤2  x≤0 ⇒cosθ ≤0 ⇒θ ∈[(π/2),((3π)/2)] ⇒  A =∫_1 ^2   ∫_(π/2) ^((3π)/2) (rcosθ +rsinθ)rdrdθ =∫_1 ^2  r^2  dr ∫_(π/2) ^((3π)/2) (cosθ +sinθ)dθ  =[(r^3 /3)]_1 ^2  ×[sinθ −cosθ]_(π/2) ^((3π)/2)  =(1/3)(8−1)(sin(((3π)/2))−cos(((3π)/2))−sin((π/2))+cos((π/2)))  =(7/3)(−1−o−1)=−((14)/3)
A=R(x+y)dxdywithR={(x,y)/1x2+y24andx0}weusethediffeomorphism{x=rcosθy=rsinθ1x2+y241r241r2x0cosθ0θ[π2,3π2]A=12π23π2(rcosθ+rsinθ)rdrdθ=12r2drπ23π2(cosθ+sinθ)dθ=[r33]12×[sinθcosθ]π23π2=13(81)(sin(3π2)cos(3π2)sin(π2)+cos(π2))=73(1o1)=143

Leave a Reply

Your email address will not be published. Required fields are marked *