Menu Close

Question-126712




Question Number 126712 by help last updated on 23/Dec/20
Commented by liberty last updated on 24/Dec/20
 (•) x+(1/x) = w ⇒x^2 +(1/x^2 ) = w^2 −2         (x−(1/x))^2 +2 = w^2 −2         x−(1/x) = ± (√(w^2 −4))         f(x+(1/x))=x−(1/x)        f(w)=±(√(w^2 −4))      f(x)= ± (√(x^2 −4))
$$\:\left(\bullet\right)\:{x}+\frac{\mathrm{1}}{{x}}\:=\:{w}\:\Rightarrow{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:{w}^{\mathrm{2}} −\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}\:=\:{w}^{\mathrm{2}} −\mathrm{2} \\ $$$$\:\:\:\:\:\:\:{x}−\frac{\mathrm{1}}{{x}}\:=\:\pm\:\sqrt{{w}^{\mathrm{2}} −\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{f}\left({x}+\frac{\mathrm{1}}{{x}}\right)={x}−\frac{\mathrm{1}}{{x}} \\ $$$$\:\:\:\:\:\:{f}\left({w}\right)=\pm\sqrt{{w}^{\mathrm{2}} −\mathrm{4}} \\ $$$$\:\:\:\:{f}\left({x}\right)=\:\pm\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Answered by Dwaipayan Shikari last updated on 23/Dec/20
f^2 (x+(1/x))=(x−(1/x))^2   f^2 (x+(1/x))=(x+(1/x))^2 −4  f^2 (x)=x^2 −4⇒f(x)=(√(x^2 −4))
$${f}^{\mathrm{2}} \left({x}+\frac{\mathrm{1}}{{x}}\right)=\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \\ $$$${f}^{\mathrm{2}} \left({x}+\frac{\mathrm{1}}{{x}}\right)=\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{4} \\ $$$${f}^{\mathrm{2}} \left({x}\right)={x}^{\mathrm{2}} −\mathrm{4}\Rightarrow{f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{4}} \\ $$
Answered by mathmax by abdo last updated on 24/Dec/20
let x+(1/x)=t ⇒x^2 +(1/x^2 ) +2=t^2  ⇒x^2  +(1/x^2 )=t^2 −2  f^2 (x+(1/x))=(x−(1/x))^2  ⇒f^2 (t)=x^2 +(1/x^2 )−2 =t^2 −4 ⇒f(t)=+^− (√(t^2 −4))
$$\mathrm{let}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{t}\:\Rightarrow\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\mathrm{2}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{t}^{\mathrm{2}} −\mathrm{2} \\ $$$$\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)=\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} \:\Rightarrow\mathrm{f}^{\mathrm{2}} \left(\mathrm{t}\right)=\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{2}\:=\mathrm{t}^{\mathrm{2}} −\mathrm{4}\:\Rightarrow\mathrm{f}\left(\mathrm{t}\right)=\overset{−} {+}\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *