Question Number 126827 by harckinwunmy last updated on 24/Dec/20
Answered by AST last updated on 24/Dec/20
$$\mathrm{Q33}. \\ $$$$\frac{\mathrm{4}+\mathrm{7}{i}}{\mathrm{1}−\mathrm{3}{i}} \\ $$$$\mathrm{Rationalising} \\ $$$$\Rightarrow\:\frac{\left(\mathrm{4}+\mathrm{7}{i}\right)\left(\mathrm{1}+\mathrm{3}{i}\right)}{\left(\mathrm{1}−\mathrm{3}{i}\right)\left(\mathrm{1}+\mathrm{3}{i}\right)}=\frac{\mathrm{4}+\mathrm{12}{i}+\mathrm{7}{i}+\left(\mathrm{21}{i}^{\mathrm{2}} \right)}{\mathrm{1}^{\mathrm{2}} −\left(\mathrm{3}{i}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}+\mathrm{19}{i}−\mathrm{21}}{\mathrm{1}−\left(−\mathrm{9}\right)}=\frac{−\mathrm{17}+\mathrm{19}{i}}{\mathrm{10}}=\frac{−\mathrm{17}}{\mathrm{10}}+{i}\left(\frac{\mathrm{19}}{\mathrm{10}}\right) \\ $$$$=−\mathrm{1}.\mathrm{7}+\mathrm{1}.\mathrm{9}{i}\:\left({C}\right) \\ $$
Answered by AST last updated on 24/Dec/20
$$\mathrm{Q34}. \\ $$$$\mathrm{Rationalising}\:\frac{\mathrm{1}+{i}}{\mathrm{2}+{i}} \\ $$$$\Rightarrow\frac{\left(\mathrm{1}+{i}\right)\left(\mathrm{2}−{i}\right)}{\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)}=\frac{\mathrm{2}−{i}+\mathrm{2}{i}−{i}^{\mathrm{2}} }{\mathrm{4}−{i}^{\mathrm{2}} }=\frac{\mathrm{2}+{i}−\left(−\mathrm{1}\right)}{\mathrm{4}−\left(−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{3}+{i}}{\mathrm{5}}=\frac{\mathrm{3}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}{i} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$
Answered by AST last updated on 24/Dec/20
$$\mathrm{Q35}. \\ $$$$\mathrm{Rationalising}\:\mathrm{z} \\ $$$$\Rightarrow\:\frac{\mathrm{1}\left(\mathrm{1}−\mathrm{2}{i}\right)}{\left(\mathrm{1}+\mathrm{2}{i}\right)\left(\mathrm{1}−\mathrm{2}{i}\right)}=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}−\left(\mathrm{2}{i}\right)^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}−\left(−\mathrm{4}\right)} \\ $$$$=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{5}}=\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}{i} \\ $$$$\overset{−} {{z}}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{5}}{i} \\ $$
Answered by AST last updated on 24/Dec/20