Menu Close

Question-127012




Question Number 127012 by Algoritm last updated on 26/Dec/20
Answered by Olaf last updated on 26/Dec/20
 { ((y_1 ′ = y_1 +y_2 + x (1))),((y_2 ′ = y_1 −2y_2 +2x (2))) :}  (1) : y_2  = y_1 ′−y_1 −x (3)  y_2 ′ = y_1 ′′−y_1 ′−1  (2) : y_1 ′′−y_1 ′−1 = y_1 −2(y_1 ′−y_1 −x)+2x  y_1 ′′+y_1 ′−2y_1  = 1+4x  ⇒ y_1  = ae^x +be^(−2x) −2x−(3/2)  ⇒ y_1 ′ = ae^x −2be^(−2x) −2  (3) : y_2  = ae^x −2be^(−2x) −2−ae^x −be^(−2x) +2x+(3/2)−1  y_2  = −3be^(−2x) +2x−(3/2)
$$\begin{cases}{{y}_{\mathrm{1}} '\:=\:{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +\:{x}\:\left(\mathrm{1}\right)}\\{{y}_{\mathrm{2}} '\:=\:{y}_{\mathrm{1}} −\mathrm{2}{y}_{\mathrm{2}} +\mathrm{2}{x}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{1}\right)\::\:{y}_{\mathrm{2}} \:=\:{y}_{\mathrm{1}} '−{y}_{\mathrm{1}} −{x}\:\left(\mathrm{3}\right) \\ $$$${y}_{\mathrm{2}} '\:=\:{y}_{\mathrm{1}} ''−{y}_{\mathrm{1}} '−\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\::\:{y}_{\mathrm{1}} ''−{y}_{\mathrm{1}} '−\mathrm{1}\:=\:{y}_{\mathrm{1}} −\mathrm{2}\left({y}_{\mathrm{1}} '−{y}_{\mathrm{1}} −{x}\right)+\mathrm{2}{x} \\ $$$${y}_{\mathrm{1}} ''+{y}_{\mathrm{1}} '−\mathrm{2}{y}_{\mathrm{1}} \:=\:\mathrm{1}+\mathrm{4}{x} \\ $$$$\Rightarrow\:{y}_{\mathrm{1}} \:=\:{ae}^{{x}} +{be}^{−\mathrm{2}{x}} −\mathrm{2}{x}−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:{y}_{\mathrm{1}} '\:=\:{ae}^{{x}} −\mathrm{2}{be}^{−\mathrm{2}{x}} −\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\::\:{y}_{\mathrm{2}} \:=\:{ae}^{{x}} −\mathrm{2}{be}^{−\mathrm{2}{x}} −\mathrm{2}−{ae}^{{x}} −{be}^{−\mathrm{2}{x}} +\mathrm{2}{x}+\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1} \\ $$$${y}_{\mathrm{2}} \:=\:−\mathrm{3}{be}^{−\mathrm{2}{x}} +\mathrm{2}{x}−\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *