Menu Close

Question-127247




Question Number 127247 by ZiYangLee last updated on 28/Dec/20
Answered by mr W last updated on 28/Dec/20
y=−(k/3)x−((k/3)+2)  such that the line doesn′t pass  through quadrant I,  −((k/2)+2)<0 and (−(k/3)≤0)  (k>−4) and (k≥0)  i.e.:  k≥0
$${y}=−\frac{{k}}{\mathrm{3}}{x}−\left(\frac{{k}}{\mathrm{3}}+\mathrm{2}\right) \\ $$$${such}\:{that}\:{the}\:{line}\:{doesn}'{t}\:{pass} \\ $$$${through}\:{quadrant}\:{I}, \\ $$$$−\left(\frac{{k}}{\mathrm{2}}+\mathrm{2}\right)<\mathrm{0}\:{and}\:\left(−\frac{{k}}{\mathrm{3}}\leqslant\mathrm{0}\right) \\ $$$$\left({k}>−\mathrm{4}\right)\:{and}\:\left({k}\geqslant\mathrm{0}\right) \\ $$$${i}.{e}.: \\ $$$${k}\geqslant\mathrm{0} \\ $$
Commented by mr W last updated on 28/Dec/20
Commented by mr W last updated on 28/Dec/20
such that the line y=mx+c doesn′t  pass through quadrant I:  1) c<0  2) m≤0
$${such}\:{that}\:{the}\:{line}\:{y}={mx}+{c}\:{doesn}'{t} \\ $$$${pass}\:{through}\:{quadrant}\:{I}: \\ $$$$\left.\mathrm{1}\right)\:{c}<\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{m}\leqslant\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *