Question Number 127490 by ZiYangLee last updated on 30/Dec/20
Commented by mr W last updated on 30/Dec/20
$${Q}\mathrm{45}. \\ $$$$\frac{{dx}}{{dt}}=\mathrm{3}{t}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dt}}=\mathrm{2}{t} \\ $$$$\frac{{dy}}{{dx}}=\frac{\frac{{dy}}{{dt}}}{\frac{{dx}}{{dt}}}=\frac{\mathrm{2}{t}}{\mathrm{3}{t}^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{3}{t}} \\ $$$$\left(\frac{{dy}}{{dx}}\right)^{\mathrm{4}} =\left(\frac{\mathrm{2}}{\mathrm{3}{t}}\right)^{\mathrm{4}} =\frac{\mathrm{16}}{\mathrm{81}{t}^{\mathrm{4}} } \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{d}}{{dx}}\left(\frac{{dy}}{{dx}}\right)=\frac{\frac{{d}}{{dt}}\left(\frac{{dy}}{{dx}}\right)}{\frac{{dx}}{{dt}}}=\frac{−\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} }}{\mathrm{3}{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{9}{t}^{\mathrm{4}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{9}}×\frac{\mathrm{81}}{\mathrm{16}}\left(\frac{\mathrm{16}}{\mathrm{81}{t}^{\mathrm{4}} }\right)=−\frac{\mathrm{9}}{\mathrm{16}}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{4}} \\ $$$$={k}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{4}} \:{with}\:{k}=−\frac{\mathrm{9}}{\mathrm{16}}={constant} \\ $$$$ \\ $$$${Q}\mathrm{44}. \\ $$$${similarly} \\ $$
Answered by som(math1967) last updated on 30/Dec/20
$${x}={tant}\Rightarrow\frac{{dx}}{{dt}}={sec}^{\mathrm{2}} {t} \\ $$$${y}={tanpt}\Rightarrow\frac{{dy}}{{dt}}={psec}^{\mathrm{2}} {pt} \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{{psec}^{\mathrm{2}} {pt}}{{sec}^{\mathrm{2}} {t}}=\frac{{p}\left(\mathrm{1}+{tan}^{\mathrm{2}} {pt}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}} \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{{p}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\left[\because{x}={tant},{y}={tanpt}\right] \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}={p}+{py}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\mathrm{2}{x}\frac{{dy}}{{dx}}=\mathrm{2}{py}\frac{{dy}}{{dx}} \\ $$$$\therefore\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{2}\left({py}−{x}\right)\frac{{dy}}{{dx}} \\ $$