Menu Close

Question-127509




Question Number 127509 by mr W last updated on 30/Dec/20
Commented by mr W last updated on 31/Dec/20
if both ellipses have the same shape  as (x^2 /a^2 )+(y^2 /b^2 )=1, determine (b/a)=?
ifbothellipseshavethesameshapeasx2a2+y2b2=1,determineba=?
Commented by mr W last updated on 28/Jan/21
Answered by mr W last updated on 31/Dec/20
Commented by mr W last updated on 25/Jan/21
let m=tan θ, μ=(b/a)  ⇒sin θ=(m/( (√(1+m^2 )))), cos θ=(1/( (√(1+m^2 ))))    in x′y′−system:  O(h,k)  eqn. of OA:  y=k+m(x−h)  ⇒mx−y+k−mh=0  OA is tangent to ellipse:  a^2 m^2 +b^2 =(k−mh)^2      ⇒k−mh=−(√(a^2 m^2 +b^2 ))   ...(i)  eqn. of OB:  y=k−(1/m)(x−h)  ⇒(x/m)+y−k−(h/m)=0  OB is tangent to ellipse:  (a^2 /m^2 )+b^2 =(k+(h/m))^2   ⇒k+(h/m)=−(√((a^2 /m^2 )+b^2 ))   ...(ii)  from (i) and (ii):  ⇒(h/a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))  ⇒(k/a)=−(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))  say P(a cos φ,−b sin φ)  tan (θ−ϕ)=(dy/dx)=((−b cos φ)/(−a sin φ))=(μ/(tan  φ))  ((m−tan ϕ)/(1+m tan ϕ))=(μ/(tan  φ))  let η=tan φ  sin φ=(η/( (√(1+η^2 )))), cos φ=(1/( (√(1+η^2 ))))  ⇒tan ϕ=((η−(μ/m))/((η/m)+μ))    in xy−system:  say P(x_p ,y_P )  x_P =(−k−b sin φ)sin θ+(−h+a cos φ)cos θ  (x_P /a)=[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−μ sin φ]sin θ+[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+cos φ]cos θ  (x_P /a)=(m/( (√(1+m^2 ))))[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−((μη)/( (√(1+η^2 ))))]+(1/( (√(1+m^2 ))))[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+(1/( (√(1+η^2 ))))]  ⇒(x_P /a)=(1/( (√(1+m^2 ))))((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))    y_P =(−k−b sin φ)cos θ−(−h+a cos φ)sin θ  (y_P /a)=[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−μ sin φ]cos θ−[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+cos φ]sin θ  (y_P /a)=(1/( (√(1+m^2 ))))[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−((μη)/( (√(1+η^2 ))))]−(m/( (√(1+m^2 ))))[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+(1/( (√(1+η^2 ))))]  ⇒(y_P /a)=(1/( (√(1+m^2 ))))((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 )))))  (x_P ^2 /a^2 )+(y_P ^2 /b^2 )=1  ⇒((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))^2 +(1/μ^2 )((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 )))))^2 =1+m^2    ...(I)  tan ϕ=−(dy/dx)=((b/a))^2 (x_P /y_P )  ((η−(μ/m))/((η/m)+μ))=μ^2 ×(((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))/( (√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 ))))))  ⇒μ^2 ((η/m)+μ)((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))=(η−(μ/m))((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 )))))   ...(II)    for any value in range 0<θ<60° we   can find the coresponding μ from  (I) and (II).    we get μ_(max) ≈0.38436919447 at θ≈37.9382°
letm=tanθ,μ=basinθ=m1+m2,cosθ=11+m2inxysystem:O(h,k)eqn.ofOA:y=k+m(xh)mxy+kmh=0OAistangenttoellipse:a2m2+b2=(kmh)2kmh=a2m2+b2(i)eqn.ofOB:y=k1m(xh)xm+ykhm=0OBistangenttoellipse:a2m2+b2=(k+hm)2k+hm=a2m2+b2(ii)from(i)and(ii):ha=11+m2(1+m2μ2mm2+μ2)ka=11+m2(m1+m2μ2+m2+μ2)sayP(acosϕ,bsinϕ)tan(θφ)=dydx=bcosϕasinϕ=μtanϕmtanφ1+mtanφ=μtanϕletη=tanϕsinϕ=η1+η2,cosϕ=11+η2tanφ=ημmηm+μinxysystem:sayP(xp,yP)xP=(kbsinϕ)sinθ+(h+acosϕ)cosθxPa=[11+m2(m1+m2μ2+m2+μ2)μsinϕ]sinθ+[11+m2(1+m2μ2mm2+μ2)+cosϕ]cosθxPa=m1+m2[11+m2(m1+m2μ2+m2+μ2)μη1+η2]+11+m2[11+m2(1+m2μ2mm2+μ2)+11+η2]xPa=11+m2(1+m2μ2+1mμη1+η2)yP=(kbsinϕ)cosθ(h+acosϕ)sinθyPa=[11+m2(m1+m2μ2+m2+μ2)μsinϕ]cosθ[11+m2(1+m2μ2mm2+μ2)+cosϕ]sinθyPa=11+m2[11+m2(m1+m2μ2+m2+μ2)μη1+η2]m1+m2[11+m2(1+m2μ2mm2+μ2)+11+η2]yPa=11+m2(m2+μ2m+μη1+η2)xP2a2+yP2b2=1(1+m2μ2+1mμη1+η2)2+1μ2(m2+μ2m+μη1+η2)2=1+m2(I)tanφ=dydx=(ba)2xPyPημmηm+μ=μ2×1+m2μ2+1mμη1+η2m2+μ2m+μη1+η2μ2(ηm+μ)(1+m2μ2+1mμη1+η2)=(ημm)(m2+μ2m+μη1+η2)(II)foranyvalueinrange0<θ<60°wecanfindthecorespondingμfrom(I)and(II).wegetμmax0.38436919447atθ37.9382°
Commented by mr W last updated on 31/Dec/20
Commented by mr W last updated on 31/Dec/20
Commented by mr W last updated on 31/Dec/20
Commented by mr W last updated on 02/Jan/21
Answered by mr W last updated on 30/Jan/21
Commented by mr W last updated on 30/Jan/21
let m=tan θ, μ=(b/a)  ⇒sin θ=(m/( (√(1+m^2 )))), cos θ=(1/( (√(1+m^2 ))))    in x′y′−system:  O(h,k)  eqn. of OA:  y=k+m(x−h)  ⇒mx−y+k−mh=0  OA is tangent to ellipse:  a^2 m^2 +b^2 =(k−mh)^2      ⇒k−mh=−(√(a^2 m^2 +b^2 ))   ...(i)  eqn. of OB:  y=k−(1/m)(x−h)  ⇒(x/m)+y−k−(h/m)=0  OB is tangent to ellipse:  (a^2 /m^2 )+b^2 =(k+(h/m))^2   ⇒k+(h/m)=−(√((a^2 /m^2 )+b^2 ))   ...(ii)  from (i) and (ii):  ⇒(h/a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))  ⇒(k/a)=−(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))    in xy−system:  say O′(x_C ,y_C )  x_C =−k sin θ−h cos θ  (x_C /a)=(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) cos θ+(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) sin θ  ⇒(x_C /a)=((√(1+m^2 μ^2 ))/( (√(1+m^2 ))))  y_C =−k cos θ+h sin θ  (y_C /a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) sin θ+(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) cos θ  ⇒(y_C /a)=((√(m^2 +μ^2 ))/( (√(1+m^2 ))))  (x^2 /a^2 )+(y^2 /b^2 )=1  ⇒μ^2 ξ^2 +η^2 =μ^2    ...(i)      ⇒η=μ(√(1−ξ^2 ))  eqn. of ellipse O′:  (([(x−x_C )(1/( (√(1+m^2 ))))−(y−y_C )(m/( (√(1+m^2 ))))+x_C ]^2 )/a^2 )+(([(x−x_C )sin θ−(y−y_C )cos θ+y_C ]^2 )/b^2 )=1  [((x/a)−((√(1+m^2 μ^2 ))/( (√(1+m^2 )))))−m((y/a)−((√(m^2 +μ^2 ))/( (√(1+m^2 )))))+(√(1+m^2 μ^2 ))]^2 +(([m((x/a)−((√(1+m^2 μ^2 ))/( (√(1+m^2 )))))+((y/a)−((√(m^2 +μ^2 ))/( (√(1+m^2 )))))+(√(m^2 +μ^2 ))]^2 )/μ^2 )=1+m^2   ⇒μ^2 [ξ−mη+((m(√(m^2 +μ^2 ))−(√(1+m^2 μ^2 )))/( (√(1+m^2 ))))+(√(1+m^2 μ^2 ))]^2 +[mξ+η−(((√(m^2 +μ^2 ))+m(√(1+m^2 μ^2 )))/( (√(1+m^2 ))))+(√(m^2 +μ^2 ))]^2 =μ^2 (1+m^2 )   ...(ii)  ⇒μ^2 (ξ−mη+p)^2 +(mξ+η+q)^2 =μ^2 (1+m^2 )   ...(ii)  ......
letm=tanθ,μ=basinθ=m1+m2,cosθ=11+m2inxysystem:O(h,k)eqn.ofOA:y=k+m(xh)mxy+kmh=0OAistangenttoellipse:a2m2+b2=(kmh)2kmh=a2m2+b2(i)eqn.ofOB:y=k1m(xh)xm+ykhm=0OBistangenttoellipse:a2m2+b2=(k+hm)2k+hm=a2m2+b2(ii)from(i)and(ii):ha=11+m2(1+m2μ2mm2+μ2)ka=11+m2(m1+m2μ2+m2+μ2)inxysystem:sayO(xC,yC)xC=ksinθhcosθxCa=11+m2(1+m2μ2mm2+μ2)cosθ+11+m2(m1+m2μ2+m2+μ2)sinθxCa=1+m2μ21+m2yC=kcosθ+hsinθyCa=11+m2(1+m2μ2mm2+μ2)sinθ+11+m2(m1+m2μ2+m2+μ2)cosθyCa=m2+μ21+m2x2a2+y2b2=1μ2ξ2+η2=μ2(i)η=μ1ξ2eqn.ofellipseO:[(xxC)11+m2(yyC)m1+m2+xC]2a2+[(xxC)sinθ(yyC)cosθ+yC]2b2=1[(xa1+m2μ21+m2)m(yam2+μ21+m2)+1+m2μ2]2+[m(xa1+m2μ21+m2)+(yam2+μ21+m2)+m2+μ2]2μ2=1+m2μ2[ξmη+mm2+μ21+m2μ21+m2+1+m2μ2]2+[mξ+ηm2+μ2+m1+m2μ21+m2+m2+μ2]2=μ2(1+m2)(ii)μ2(ξmη+p)2+(mξ+η+q)2=μ2(1+m2)(ii)

Leave a Reply

Your email address will not be published. Required fields are marked *