Question Number 127509 by mr W last updated on 30/Dec/20

Commented by mr W last updated on 31/Dec/20

Commented by mr W last updated on 28/Jan/21

Answered by mr W last updated on 31/Dec/20

Commented by mr W last updated on 25/Jan/21
![let m=tan θ, μ=(b/a) ⇒sin θ=(m/( (√(1+m^2 )))), cos θ=(1/( (√(1+m^2 )))) in x′y′−system: O(h,k) eqn. of OA: y=k+m(x−h) ⇒mx−y+k−mh=0 OA is tangent to ellipse: a^2 m^2 +b^2 =(k−mh)^2 ⇒k−mh=−(√(a^2 m^2 +b^2 )) ...(i) eqn. of OB: y=k−(1/m)(x−h) ⇒(x/m)+y−k−(h/m)=0 OB is tangent to ellipse: (a^2 /m^2 )+b^2 =(k+(h/m))^2 ⇒k+(h/m)=−(√((a^2 /m^2 )+b^2 )) ...(ii) from (i) and (ii): ⇒(h/a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) ⇒(k/a)=−(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) say P(a cos φ,−b sin φ) tan (θ−ϕ)=(dy/dx)=((−b cos φ)/(−a sin φ))=(μ/(tan φ)) ((m−tan ϕ)/(1+m tan ϕ))=(μ/(tan φ)) let η=tan φ sin φ=(η/( (√(1+η^2 )))), cos φ=(1/( (√(1+η^2 )))) ⇒tan ϕ=((η−(μ/m))/((η/m)+μ)) in xy−system: say P(x_p ,y_P ) x_P =(−k−b sin φ)sin θ+(−h+a cos φ)cos θ (x_P /a)=[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−μ sin φ]sin θ+[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+cos φ]cos θ (x_P /a)=(m/( (√(1+m^2 ))))[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−((μη)/( (√(1+η^2 ))))]+(1/( (√(1+m^2 ))))[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+(1/( (√(1+η^2 ))))] ⇒(x_P /a)=(1/( (√(1+m^2 ))))((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 ))))) y_P =(−k−b sin φ)cos θ−(−h+a cos φ)sin θ (y_P /a)=[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−μ sin φ]cos θ−[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+cos φ]sin θ (y_P /a)=(1/( (√(1+m^2 ))))[(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 )))−((μη)/( (√(1+η^2 ))))]−(m/( (√(1+m^2 ))))[(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 )))+(1/( (√(1+η^2 ))))] ⇒(y_P /a)=(1/( (√(1+m^2 ))))((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 ))))) (x_P ^2 /a^2 )+(y_P ^2 /b^2 )=1 ⇒((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))^2 +(1/μ^2 )((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 )))))^2 =1+m^2 ...(I) tan ϕ=−(dy/dx)=((b/a))^2 (x_P /y_P ) ((η−(μ/m))/((η/m)+μ))=μ^2 ×(((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))/( (√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 )))))) ⇒μ^2 ((η/m)+μ)((√(1+m^2 μ^2 ))+((1−mμη)/( (√(1+η^2 )))))=(η−(μ/m))((√(m^2 +μ^2 ))−((m+μη)/( (√(1+η^2 ))))) ...(II) for any value in range 0<θ<60° we can find the coresponding μ from (I) and (II). we get μ_(max) ≈0.38436919447 at θ≈37.9382°](https://www.tinkutara.com/question/Q127600.png)
Commented by mr W last updated on 31/Dec/20

Commented by mr W last updated on 31/Dec/20

Commented by mr W last updated on 31/Dec/20

Commented by mr W last updated on 02/Jan/21

Answered by mr W last updated on 30/Jan/21

Commented by mr W last updated on 30/Jan/21
![let m=tan θ, μ=(b/a) ⇒sin θ=(m/( (√(1+m^2 )))), cos θ=(1/( (√(1+m^2 )))) in x′y′−system: O(h,k) eqn. of OA: y=k+m(x−h) ⇒mx−y+k−mh=0 OA is tangent to ellipse: a^2 m^2 +b^2 =(k−mh)^2 ⇒k−mh=−(√(a^2 m^2 +b^2 )) ...(i) eqn. of OB: y=k−(1/m)(x−h) ⇒(x/m)+y−k−(h/m)=0 OB is tangent to ellipse: (a^2 /m^2 )+b^2 =(k+(h/m))^2 ⇒k+(h/m)=−(√((a^2 /m^2 )+b^2 )) ...(ii) from (i) and (ii): ⇒(h/a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) ⇒(k/a)=−(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) in xy−system: say O′(x_C ,y_C ) x_C =−k sin θ−h cos θ (x_C /a)=(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) cos θ+(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) sin θ ⇒(x_C /a)=((√(1+m^2 μ^2 ))/( (√(1+m^2 )))) y_C =−k cos θ+h sin θ (y_C /a)=−(1/(1+m^2 ))((√(1+m^2 μ^2 ))−m(√(m^2 +μ^2 ))) sin θ+(1/(1+m^2 ))(m(√(1+m^2 μ^2 ))+(√(m^2 +μ^2 ))) cos θ ⇒(y_C /a)=((√(m^2 +μ^2 ))/( (√(1+m^2 )))) (x^2 /a^2 )+(y^2 /b^2 )=1 ⇒μ^2 ξ^2 +η^2 =μ^2 ...(i) ⇒η=μ(√(1−ξ^2 )) eqn. of ellipse O′: (([(x−x_C )(1/( (√(1+m^2 ))))−(y−y_C )(m/( (√(1+m^2 ))))+x_C ]^2 )/a^2 )+(([(x−x_C )sin θ−(y−y_C )cos θ+y_C ]^2 )/b^2 )=1 [((x/a)−((√(1+m^2 μ^2 ))/( (√(1+m^2 )))))−m((y/a)−((√(m^2 +μ^2 ))/( (√(1+m^2 )))))+(√(1+m^2 μ^2 ))]^2 +(([m((x/a)−((√(1+m^2 μ^2 ))/( (√(1+m^2 )))))+((y/a)−((√(m^2 +μ^2 ))/( (√(1+m^2 )))))+(√(m^2 +μ^2 ))]^2 )/μ^2 )=1+m^2 ⇒μ^2 [ξ−mη+((m(√(m^2 +μ^2 ))−(√(1+m^2 μ^2 )))/( (√(1+m^2 ))))+(√(1+m^2 μ^2 ))]^2 +[mξ+η−(((√(m^2 +μ^2 ))+m(√(1+m^2 μ^2 )))/( (√(1+m^2 ))))+(√(m^2 +μ^2 ))]^2 =μ^2 (1+m^2 ) ...(ii) ⇒μ^2 (ξ−mη+p)^2 +(mξ+η+q)^2 =μ^2 (1+m^2 ) ...(ii) ......](https://www.tinkutara.com/question/Q130923.png)