Menu Close

Question-127547




Question Number 127547 by Mathgreat last updated on 30/Dec/20
Answered by mr W last updated on 31/Dec/20
Commented by mr W last updated on 31/Dec/20
ΔAD′B≡ΔCDB  AB=BC=(√(1^2 +2^2 ))=(√5)  A_(ΔABC) =(((√5)×(√5))/2)=(5/2)  A_(ΔADC) =A_(ΔABC) −(A_(ΔCDB) +A_(ΔABD) )  =A_(ΔABC) −A_(AD′BD)   =A_(ΔABC) −(A_(ΔAD′D) +A_(ΔDD′B) )  =(5/2)−((((√2)×(√2))/2)+((1×1)/2))  =(5/2)−(3/2)  =1
ΔADBΔCDBAB=BC=12+22=5AΔABC=5×52=52AΔADC=AΔABC(AΔCDB+AΔABD)=AΔABCAADBD=AΔABC(AΔADD+AΔDDB)=52(2×22+1×12)=5232=1
Commented by mr W last updated on 31/Dec/20
or  ∠BDC=∠BD′A=90°  ∠ADC=360°−90°−45°−90°=135°  A_(ΔADC) =(((√2)×2×sin 135°)/2)=1
orBDC=BDA=90°ADC=360°90°45°90°=135°AΔADC=2×2×sin135°2=1

Leave a Reply

Your email address will not be published. Required fields are marked *