Question Number 127788 by peter frank last updated on 02/Jan/21
Answered by mr W last updated on 02/Jan/21
$${AB}=\left[{ab}\right]=\mathrm{10}{a}+{b} \\ $$$${CD}=\left[{ba}\right]={a}+\mathrm{10}{b} \\ $$$${with}\:\mathrm{1}\leqslant{a},{b}\leqslant\mathrm{9} \\ $$$$ \\ $$$${OE}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left({AB}^{\mathrm{2}} −{CD}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{OE}=\frac{\sqrt{\left({AB}+{CD}\right)\left({AB}−{CD}\right)}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{11}\left({a}+{b}\right)\left({a}−{b}\right)}}{\mathrm{2}}={rational} \\ $$$$\Rightarrow\left({a}+{b}\right)\left({a}−{b}\right)=\mathrm{11}{n}^{\mathrm{2}} \\ $$$${OE}=\frac{\mathrm{3}×\mathrm{11}{n}}{\mathrm{2}}=\frac{\mathrm{33}{n}}{\mathrm{2}} \\ $$$$ \\ $$$${case}\:\mathrm{1}: \\ $$$${a}+{b}=\mathrm{11} \\ $$$${a}−{b}={n}^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{11}+{n}^{\mathrm{2}} }{\mathrm{2}},\:{b}=\frac{\mathrm{11}−{n}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${n}=\mathrm{1}:\:{a}=\mathrm{6},\:{b}=\mathrm{5}\:\Rightarrow{OE}=\frac{\mathrm{33}}{\mathrm{2}} \\ $$$${n}=\mathrm{3}:\:{a}=\mathrm{10}>\mathrm{9},\:{b}=\mathrm{1}\:\Rightarrow{bad} \\ $$$$ \\ $$$${case}\:\mathrm{2}: \\ $$$${a}+{b}={n}^{\mathrm{2}} \\ $$$${a}−{b}=\mathrm{11}\:\Rightarrow{a}>\mathrm{11}>\mathrm{9}\:\Rightarrow{bad} \\ $$$$ \\ $$$${case}\:\mathrm{3}: \\ $$$${a}+{b}=\mathrm{11}{n} \\ $$$${a}−{b}={n} \\ $$$$\Rightarrow{a}=\mathrm{6}{n},\:{b}=\mathrm{5}{n} \\ $$$${n}=\mathrm{1}:\:{a}=\mathrm{6},\:{b}=\mathrm{5}\:\Rightarrow{OE}=\frac{\mathrm{33}}{\mathrm{2}} \\ $$$${n}=\mathrm{2}:\:{a}=\mathrm{12}>\mathrm{9},\:{b}=\mathrm{10}>\mathrm{9}\:\Rightarrow{bad} \\ $$$$ \\ $$$${case}\:\mathrm{4}: \\ $$$${a}+{b}={n} \\ $$$${a}−{b}=\mathrm{11}{n}>{a}+{b}\:\Rightarrow{bad} \\ $$$$ \\ $$$${case}\:\mathrm{5}: \\ $$$${a}+{b}=\mathrm{11}{n}^{\mathrm{2}} \\ $$$${a}−{b}=\mathrm{1} \\ $$$$\Rightarrow{a}=\frac{\mathrm{11}{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}},\:{b}=\frac{\mathrm{11}{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}} \\ $$$${n}=\mathrm{1}:\:{a}=\mathrm{6},\:{b}=\mathrm{5}\:\Rightarrow{OE}=\frac{\mathrm{33}}{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{the}\:{only}\:{solution}\:{is}\:{OE}=\frac{\mathrm{33}}{\mathrm{2}}\:{with} \\ $$$${AB}=\mathrm{65},\:{CD}=\mathrm{56} \\ $$
Commented by peter frank last updated on 02/Jan/21
$$\mathrm{thank}\:\mathrm{you}.\mathrm{happy}\:\mathrm{new}\:\mathrm{year} \\ $$
Commented by mr W last updated on 02/Jan/21
$${the}\:{same}\:{to}\:{you}! \\ $$