Menu Close

Question-127889




Question Number 127889 by A8;15: last updated on 02/Jan/21
Answered by mindispower last updated on 02/Jan/21
=Σ_(n≥1) (1/(5^n n))  (1/(1−x))=Σ_(n≥0) x^n   ⇒∫_0 ^t (1/(1−x))dx=^� Σ_(n≥1) (t^n /n),,t=(1/5)⇒  ∫_0 ^(1/5) (dx/(1−x))=Σ_(n≥1) (1/(n5^n ))=−ln(1−(1/5))=ln((5/4))
$$=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{5}^{{n}} {n}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}=\underset{{n}\geqslant\mathrm{0}} {\sum}{x}^{{n}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}}{\mathrm{1}−{x}}{dx}\hat {=}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{t}^{{n}} }{{n}},,{t}=\frac{\mathrm{1}}{\mathrm{5}}\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{{dx}}{\mathrm{1}−{x}}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}\mathrm{5}^{{n}} }=−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right)={ln}\left(\frac{\mathrm{5}}{\mathrm{4}}\right) \\ $$
Commented by A8;15: last updated on 03/Jan/21
Thanks sir. Happy New Year
$$\mathrm{Thanks}\:\mathrm{sir}.\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Year}} \\ $$
Commented by mindispower last updated on 03/Jan/21
withe pleasur  happy new year
$${withe}\:{pleasur} \\ $$$${happy}\:{new}\:{year} \\ $$
Answered by mr W last updated on 02/Jan/21
ln (1+x)=x−(x^2 /2)+(x^3 /3)−(x^4 /4)+...  ln (1−x)=−x−(x^2 /2)−(x^3 /3)−(x^4 /4)−...  ⇒ln (1/(1−x))=x+(x^2 /2)+(x^3 /3)+(x^4 /4)+...  with x=(1/5)  ⇒(1/5)+(1/(5^2 ×2))+(1/(5^3 ×3))+(1/(5^4 ×4))+...=ln (5/4)
$$\mathrm{ln}\:\left(\mathrm{1}+{x}\right)={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+… \\ $$$$\mathrm{ln}\:\left(\mathrm{1}−{x}\right)=−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}−… \\ $$$$\Rightarrow\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}={x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+… \\ $$$${with}\:{x}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} ×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} ×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{4}} ×\mathrm{4}}+…=\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Commented by A8;15: last updated on 03/Jan/21
Thanks Mr. W. Happy New Year
$$\mathrm{Thanks}\:\mathrm{Mr}.\:\mathrm{W}.\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Year}} \\ $$
Commented by mr W last updated on 03/Jan/21
happy new year too!
$${happy}\:{new}\:{year}\:{too}! \\ $$
Answered by Dwaipayan Shikari last updated on 03/Jan/21
(1/5)+(1/(5^2 .2))+(1/(5^3 .3))+...  =−log(1−(1/5))=log((5/4))  Generally Σ_(n=1) ^∞ (1/(nk^n ))=log((k/(k−1)))
$$\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} .\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} .\mathrm{3}}+… \\ $$$$=−{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right)={log}\left(\frac{\mathrm{5}}{\mathrm{4}}\right) \\ $$$${Generally}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{nk}^{{n}} }={log}\left(\frac{{k}}{{k}−\mathrm{1}}\right) \\ $$
Commented by A8;15: last updated on 03/Jan/21
Thanks sir. Happy New Year
$$\mathrm{Thanks}\:\mathrm{sir}.\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Year}} \\ $$
Commented by Dwaipayan Shikari last updated on 03/Jan/21
Have a great year!
$${Have}\:{a}\:{great}\:{year}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *