Menu Close

Question-128010




Question Number 128010 by Study last updated on 03/Jan/21
Commented by Study last updated on 03/Jan/21
help me and show practice
$${help}\:{me}\:{and}\:{show}\:{practice} \\ $$
Commented by som(math1967) last updated on 03/Jan/21
(1/x)
$$\frac{\mathrm{1}}{{x}} \\ $$
Commented by som(math1967) last updated on 03/Jan/21
(1/x){(x/(cosocos1))+(x/(cos1cos2))+...+(x/(cos44cos45))}  =(1/x){((sin(1−0))/(cos0cos1))+((sin(2−1))/(cos1cos2))+..((sin(45−44))/(cos44cos45))}  =(1/x){((sin1)/(cos1))−((sin0)/(cos0))+((sin2)/(cos2))−((sin1)/(cos1))         ......+((sin45)/(cos45))−((sin44)/(cos44))}  (1/x)×1=(1/x)
$$\frac{\mathrm{1}}{{x}}\left\{\frac{{x}}{{cosocos}\mathrm{1}}+\frac{{x}}{{cos}\mathrm{1}{cos}\mathrm{2}}+…+\frac{{x}}{{cos}\mathrm{44}{cos}\mathrm{45}}\right\} \\ $$$$=\frac{\mathrm{1}}{{x}}\left\{\frac{{sin}\left(\mathrm{1}−\mathrm{0}\right)}{{cos}\mathrm{0}{cos}\mathrm{1}}+\frac{{sin}\left(\mathrm{2}−\mathrm{1}\right)}{{cos}\mathrm{1}{cos}\mathrm{2}}+..\frac{{sin}\left(\mathrm{45}−\mathrm{44}\right)}{{cos}\mathrm{44}{cos}\mathrm{45}}\right\} \\ $$$$=\frac{\mathrm{1}}{{x}}\left\{\frac{{sin}\mathrm{1}}{{cos}\mathrm{1}}−\frac{{sin}\mathrm{0}}{{cos}\mathrm{0}}+\frac{{sin}\mathrm{2}}{{cos}\mathrm{2}}−\frac{{sin}\mathrm{1}}{{cos}\mathrm{1}}\right. \\ $$$$\left.\:\:\:\:\:\:\:……+\frac{{sin}\mathrm{45}}{{cos}\mathrm{45}}−\frac{{sin}\mathrm{44}}{{cos}\mathrm{44}}\right\} \\ $$$$\frac{\mathrm{1}}{{x}}×\mathrm{1}=\frac{\mathrm{1}}{{x}} \\ $$
Commented by Study last updated on 03/Jan/21
good!!   thanks sir
$${good}!!\:\:\:{thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *