Menu Close

Question-128652




Question Number 128652 by ajfour last updated on 09/Jan/21
Commented by ajfour last updated on 09/Jan/21
Find the radius of outer circle  in terms of inradii R and r of  two isosceles right angled   triangles (as shown, see fig).
$${Find}\:{the}\:{radius}\:{of}\:{outer}\:{circle} \\ $$$${in}\:{terms}\:{of}\:{inradii}\:{R}\:{and}\:{r}\:{of} \\ $$$${two}\:{isosceles}\:{right}\:{angled}\: \\ $$$${triangles}\:\left({as}\:{shown},\:{see}\:{fig}\right). \\ $$
Answered by mr W last updated on 09/Jan/21
Commented by mr W last updated on 09/Jan/21
p=(√2)(R+(√2)R)=(2+(√2))R  q=(2+(√2))r  AC=(√(p^2 +q^2 ))=(2+(√2))(√(R^2 +r^2 ))  ∠AOC=2×∠ABC=2×45°=90°  R_o =OA=OC=((AC)/( (√2)))=(((2+(√2))(√(R^2 +r^2 )))/( (√2)))  ⇒R_o =((√2)+1)(√(R^2 +r^2 ))
$${p}=\sqrt{\mathrm{2}}\left({R}+\sqrt{\mathrm{2}}{R}\right)=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){R} \\ $$$${q}=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){r} \\ $$$${AC}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\angle{AOC}=\mathrm{2}×\angle{ABC}=\mathrm{2}×\mathrm{45}°=\mathrm{90}° \\ $$$${R}_{{o}} ={OA}={OC}=\frac{{AC}}{\:\sqrt{\mathrm{2}}}=\frac{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{R}_{{o}} =\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 09/Jan/21
Great way Sir, i tried to think  a better way, got entangled!
$${Great}\:{way}\:{Sir},\:{i}\:{tried}\:{to}\:{think} \\ $$$${a}\:{better}\:{way},\:{got}\:{entangled}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *