Menu Close

Question-128767




Question Number 128767 by LUFFY last updated on 10/Jan/21
Commented by LUFFY last updated on 10/Jan/21
ans (1/(24)) but i am getting (1/(12))
ans124butiamgetting112
Commented by LUFFY last updated on 10/Jan/21
send me please
sendmeplease
Answered by Dwaipayan Shikari last updated on 10/Jan/21
Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) )).ζ(k+1)      (k=4m+1)  k=13     It is ((13!)/((2π)^(14) )).(((2π)^(14) B_(14) )/(2(14)!))=(B_(14) /(28))=(1/(24))  B_n =Bernoulli Number
n=1nke2πn1=k!(2π)k+1.ζ(k+1)(k=4m+1)k=13Itis13!(2π)14.(2π)14B142(14)!=B1428=124Bn=BernoulliNumber
Commented by LUFFY last updated on 10/Jan/21
check again
checkagain
Commented by LUFFY last updated on 10/Jan/21
can you send full solution
canyousendfullsolution
Commented by Dwaipayan Shikari last updated on 19/Feb/21
(1/(e^(2π) −1))=Σ_(n=1) ^∞ e^(−2πn  )               Σ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/(2x))coth(πx)−(1/(2x^2 ))  (1/x)+2xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=πcoth(πx)⇒(1/(2x))+xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/2)+(π/(e^(2πx) −1))  (1/(e^(2πx) −1))=(x/π)Σ_(n=1) ^∞ (1/(n^2 +x^2 ))+(1/(2πx))−(1/2)  Σ_(n=1) ^∞ e^(−2πnx) =(1/(2πx))Σ_(n=1) ^∞ (1/(x+in))+(1/(x−in))+(1/(2πx))−(1/2)  differentiating   k th time  (k=4m+1)  (2π)^k Σ_(x=1) ^∞ n^k e^(−2πnx) =((k!)/((x)^(k+1) (2π)))+Σ_(n=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))Σ_(x=1) ^∞ (1/x^(k+1) )+Σ_(n=1) ^∞ Σ_(x=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  ⇒Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))ζ(k+1)    (k=4m+1)  Σ_(x≥1) Σ_(n≥1) (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))=0
1e2π1=n=1e2πnn=11n2+x2=π2xcoth(πx)12x21x+2xn=11n2+x2=πcoth(πx)12x+xn=11n2+x2=π2+πe2πx11e2πx1=xπn=11n2+x2+12πx12n=1e2πnx=12πxn=11x+in+1xin+12πx12differentiatingkthtime(k=4m+1)(2π)kx=1nke2πnx=k!(x)k+1(2π)+n=11(x+in)k+1+1(xin)k+1n=1nke2πn1=k!(2π)k+1x=11xk+1+n=1x=11(x+in)k+1+1(xin)k+1n=1nke2πn1=k!(2π)k+1ζ(k+1)(k=4m+1)x1n11(x+in)k+1+1(xin)k+1=0
Commented by Dwaipayan Shikari last updated on 10/Jan/21
For every k=4m+1 , this is valid   Σ_(n=1) ^∞ (n^5 /(e^(2πn) −1))=(1/(504))...
Foreveryk=4m+1,thisisvalidn=1n5e2πn1=1504

Leave a Reply

Your email address will not be published. Required fields are marked *