Menu Close

Question-128849




Question Number 128849 by I want to learn more last updated on 10/Jan/21
Commented by Tawa11 last updated on 15/Sep/21
nice
nice
Answered by mr W last updated on 10/Jan/21
let a_n +pb_n =q(a_(n−1) +pb_(n−1) )  a_n +pb_n =(3+p)a_(n−1) +2(1+p)b_(n−1)   ⇒3+p=q  ⇒2(1+p)=pq  2(1+p)=p(3+p)  p^2 +p−2=0  (p−1)(p+2)=0  ⇒p=1, q=4  ⇒p=−2, q=1  a_n +b_n =4(a_(n−1) +b_(n−1) )=4^n (a_0 +b_0 )=3×4^n   a_n =3a_(n−1) +2(3×4^(n−1) −a_(n−1) )  a_n =a_(n−1) +6×4^(n−1)   a_(n−1) =a_(n−2) +6×4^(n−2)   ...  a_1 =a_0 +6×4^0   ⇒a_n =a_0 +6(4^0 +4^1 +4^2 +...+4^(n−1) )  ⇒a_n =1+6×((4^n −1)/(4−1))  ⇒a_n =2×4^n −1  ⇒a_n =2^(2n+1) −1  b_n =3×4^n −(2^(2n+1) −1)  ⇒b_n =2^(2n) +1
letan+pbn=q(an1+pbn1)an+pbn=(3+p)an1+2(1+p)bn13+p=q2(1+p)=pq2(1+p)=p(3+p)p2+p2=0(p1)(p+2)=0p=1,q=4p=2,q=1an+bn=4(an1+bn1)=4n(a0+b0)=3×4nan=3an1+2(3×4n1an1)an=an1+6×4n1an1=an2+6×4n2a1=a0+6×40an=a0+6(40+41+42++4n1)an=1+6×4n141an=2×4n1an=22n+11bn=3×4n(22n+11)bn=22n+1
Commented by I want to learn more last updated on 10/Jan/21
Thanks sir, i appreciate.
Thankssir,iappreciate.
Answered by mathmax by abdo last updated on 11/Jan/21
 { ((a_n =3a_(n−1) +2b_(n−1)             ((a_n ),(b_n ) ))),((b_n =a_(n−1) +2b_(n−1)      ⇒)) :}= (((3        2)),((1         2)) ) ((a_(n−1) ),(b_(n−1) ) )  ⇒ ((a_n ),(b_n ) ) =M^n  ((a_0 ),(b_0 ) ) with M = (((3          2)),((1          2)) )  the problem lead to find M^n   p_c (x)=det(M−xI)= determinant (((3−x          2)),((1            2−x)))=(3−x)(2−x)−2  =6−3x−2x+x^2 −2 =x^2 −5x+4 =x^2 −1 −5x+5  =(x−1)(x+1)−5(x−1) =(x−1)(x−4) so propre values are  λ_1 =1 and λ_2 =4    let divide x^(n )  by P_c (M) ⇒  x^n  =P_c (x)q(x)+u_n x +v_n  ⇒1^n  =u_n  +v_n  and4^n  =4u_n  +v_n  ⇒    { ((u_n  +v_n =1                   { ((u_n =((4^n −1)/3))),((v_n =1−((4^n −1)/3))) :})),((4u_n  +v_n =4^(n  )     ⇒)) :}  ⇒ { ((u_n =((4^n −1)/3)    ⇒   { ((u_n =((4^n −1)/3))),((v_n =((4−4^n )/3))) :})),((v_n =((3−4^n +1)/3))) :}  M^n  =u_n M+v_n  I_2     (cayley  P_c (M)=0)  ⇒M^n  =((4^n −1)/3) (((3             2)),((1             2)) ) +((4−4^n )/3) (((1        0)),((0         1)) )  = (((4^n −1           (2/3)(4^n −1))),((((4^n −1)/3)            (2/3)(4^n −1))) )  + (((((4−4^n )/3)       0)),((0             ((4−4^n )/3))) )  = (((((3.4^n −3+4−4^n )/3)       (2/3)(4^n −1))),((((4^n −1)/3)                       ((2.4^n −2+4−4^n )/3))) )  = (((((2.4^n +1)/3)          (2/3)(4^n −1))),((((4^n −1)/3)              ((4^n +2)/3))) )  ⇒ ((a_n ),(b_n ) )=(1/3) (((2.4^n +1       2.4^n −2)),((4^n −1             4^n  +2)) ) . ((1),(2) )  =(1/3) (((2.4^n  +1+4.4^n −4)),((4^n −1 +2.4^n  +4)) )=(1/3) (((6.4^n −3)),((3.4^n  +3)) )  = (((2.4^n −1)),((4^n  +1)) ) ⇒ a_n =2.4^n −1 and v_n =4^n  +1
{an=3an1+2bn1(anbn)bn=an1+2bn1=(3212)(an1bn1)(anbn)=Mn(a0b0)withM=(3212)theproblemleadtofindMnpc(x)=det(MxI)=|3x212x|=(3x)(2x)2=63x2x+x22=x25x+4=x215x+5=(x1)(x+1)5(x1)=(x1)(x4)soproprevaluesareλ1=1andλ2=4letdividexnbyPc(M)xn=Pc(x)q(x)+unx+vn1n=un+vnand4n=4un+vn{un+vn=1{un=4n13vn=14n134un+vn=4n{un=4n13{un=4n13vn=44n3vn=34n+13Mn=unM+vnI2(cayleyPc(M)=0)Mn=4n13(3212)+44n3(1001)=(4n123(4n1)4n1323(4n1))+(44n30044n3)=(3.4n3+44n323(4n1)4n132.4n2+44n3)=(2.4n+1323(4n1)4n134n+23)(anbn)=13(2.4n+12.4n24n14n+2).(12)=13(2.4n+1+4.4n44n1+2.4n+4)=13(6.4n33.4n+3)=(2.4n14n+1)an=2.4n1andvn=4n+1
Commented by I want to learn more last updated on 11/Jan/21
Thanks sir, I appreciate.
Thankssir,Iappreciate.
Commented by I want to learn more last updated on 11/Jan/21
Thanks sir, i appreciate
Thankssir,iappreciate
Answered by Olaf last updated on 11/Jan/21
X_0  =  ((1),(2) ), A =  [(3,2),(1,2) ], X_n  = AX_(n−1)   X_n  = A^n X_0  =  ((a_n ),(b_n ) )  We solve det(A−λI) = 0  ⇒ (3−λ)(2−λ)−2 = 0  eigenvalues :  λ_1  = 1 and λ_2  = 4  B =  [(λ_1 ,0),(0,λ_2 ) ]=  [(1,0),(0,4) ]  A ((x),(y) ) = λ_1  ((x),(y) ) ⇒x_1  = −1 and y_1  = 1  A ((x),(y) ) = λ_2  ((x),(y) ) ⇒x_2  = 2 and y_2  = 1  eigenvectors :  V_1  =  (((−1)),(1) ) and V_2  =  ((2),(1) )  P =  [((−1),2),(1,1) ]  P^(−1)  =  [((−(1/3)),(2/3)),((1/3),(1/3)) ]  B = P^(−1) AP and A^n  = PB^n P^(−1)   A^n  =  [((−1),2),(1,1) ] [(1,0),(0,4^n ) ] [((−(1/3)),(2/3)),((1/3),(1/3)) ]  A^n  =  [((−1),2),(1,1) ] [((−(1/3)),(2/3)),((4^n /3),(4^n /3)) ]  A^n  =  [(((2.4^n +1)/3),((2.4^n −2)/3)),(((4^n −1)/3),((4^n +2)/3)) ]  A^n  =  [(((2^(2n+1) +1)/3),((2^(2n+1) −2)/3)),(((2^(2n) −1)/3),((2^(2n) +2)/3)) ]  X_n  = A^n X_0  =  (((((2^(2n+1) +1)/3)+2((2^(2n+1) −2)/3))),((((2^(2n) −1)/3)+2((2^(2n) +2)/3))) )  X_n  = A^n X_0  =  (((2^(2n+1) −1)),((2^(2n) +1)) )
X0=(12),A=[3212],Xn=AXn1Xn=AnX0=(anbn)Wesolvedet(AλI)=0(3λ)(2λ)2=0eigenvalues:λ1=1andλ2=4B=[λ100λ2]=[1004]A(xy)=λ1(xy)x1=1andy1=1A(xy)=λ2(xy)x2=2andy2=1eigenvectors:V1=(11)andV2=(21)P=[1211]P1=[13231313]B=P1APandAn=PBnP1An=[1211][1004n][13231313]An=[1211][13234n34n3]An=[2.4n+132.4n234n134n+23]An=[22n+1+1322n+12322n1322n+23]Xn=AnX0=(22n+1+13+222n+12322n13+222n+23)Xn=AnX0=(22n+1122n+1)
Commented by I want to learn more last updated on 11/Jan/21
Thanks sir, i appreciate
Thankssir,iappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *