Menu Close

Question-130326




Question Number 130326 by rs4089 last updated on 24/Jan/21
Answered by Lordose last updated on 24/Jan/21
  Ω(p) = ∫_0 ^( ∞) ((sin(px))/(x(x^2 +1)))dx  Ω′(p) = ∫_0 ^( ∞) ((cos(px))/(x^2 +1))dx = (π/2)e^(−p)   Ω(p) = (π/2)e^(−p)  + C  Ω(0) = (π/2) = C  Ω(p) = (π/2)e^(−p) +(π/2)
Ω(p)=0sin(px)x(x2+1)dxΩ(p)=0cos(px)x2+1dx=π2epΩ(p)=π2ep+CΩ(0)=π2=CΩ(p)=π2ep+π2
Answered by mathmax by abdo last updated on 24/Jan/21
let f(p)=∫_0 ^∞  ((sin(px))/(x(x^2  +1)))dx ⇒f^′ (p)=∫_0 ^∞ ((cos(px))/(x^2  +1))dx  =(1/2)∫_(−∞) ^(+∞)  ((cos(px))/(x^2  +1))dx =(1/2)Re(∫_R (e^(ipx) /(x^2  +1))dx)  =(1/2)Re(2iπ×(e^(−p) /(2i))) =(1/2)Re(πe^(−p) ) =(π/2)e^(−p)  ⇒  f(p)=(π/2)e^(−p)  +C  f(0)=0 =(π/2) +C ⇒C=−(π/2) ⇒f(p)=(π/2)e^(−p) −(π/2)
letf(p)=0sin(px)x(x2+1)dxf(p)=0cos(px)x2+1dx=12+cos(px)x2+1dx=12Re(Reipxx2+1dx)=12Re(2iπ×ep2i)=12Re(πep)=π2epf(p)=π2ep+Cf(0)=0=π2+CC=π2f(p)=π2epπ2

Leave a Reply

Your email address will not be published. Required fields are marked *