Menu Close

Question-130350




Question Number 130350 by ajfour last updated on 24/Jan/21
Commented by ajfour last updated on 24/Jan/21
A hollow cylinder (radius R,  mass M) rolling down a long  incline, has a small ball at  an angular position 𝛗.  Determine 𝛗 in terms of  α, g, m, M, and R.
Ahollowcylinder(radiusR,massM)rollingdownalongincline,hasasmallballatanangularpositionϕ.Determineϕintermsofα,g,m,M,andR.
Answered by mr W last updated on 25/Jan/21
Commented by mr W last updated on 25/Jan/21
N cos φ=mg cos β  ⇒N=((cos β)/(cos φ))mg  N sin φ+mg sin β=ma  ⇒a=(tan φ cos β+sin β)g  I_1 =I_0 +MR^2 =MR^2 +MR^2 =2MR^2   I_1 α=Mg R sin β−NR sin φ  2MR^2 α=Mg R sin β−((cos β)/(cos φ))mgRsin φ  ⇒α=(sin β−(m/M) cos β tan φ)(g/(2R))  a=αR(1−cos φ)=(g/2)(sin β−(m/M) cos β tan φ)(1−cos φ)  (g/2)(sin β−(m/M) cos β tan φ)(1−cos φ)=(tan φ cos β+sin β)g  (sin β−(m/M) cos β tan φ)(1−cos φ)=2(tan φ cos β+sin β)  (tan β−(m/M)tan φ)(1−cos φ)=2(tan φ+tan β)   ⇒(m/M) sin φ=(2+(m/M))tan φ+(1+cos φ)tan β
Ncosϕ=mgcosβN=cosβcosϕmgNsinϕ+mgsinβ=maa=(tanϕcosβ+sinβ)gI1=I0+MR2=MR2+MR2=2MR2I1α=MgRsinβNRsinϕ2MR2α=MgRsinβcosβcosϕmgRsinϕα=(sinβmMcosβtanϕ)g2Ra=αR(1cosϕ)=g2(sinβmMcosβtanϕ)(1cosϕ)g2(sinβmMcosβtanϕ)(1cosϕ)=(tanϕcosβ+sinβ)g(sinβmMcosβtanϕ)(1cosϕ)=2(tanϕcosβ+sinβ)(tanβmMtanϕ)(1cosϕ)=2(tanϕ+tanβ)mMsinϕ=(2+mM)tanϕ+(1+cosϕ)tanβ
Commented by ajfour last updated on 26/Jan/21
Sir  i think,    a=αR
Sirithink,a=αR
Commented by mr W last updated on 26/Jan/21
you are right sir!
youarerightsir!
Commented by ajfour last updated on 26/Jan/21
MgRsin β−NRsin φ=2MR^2 α  Ncos φ=mgcos β  Nsin φ+mgsin β=ma  a=αR  −−−−−−−−−−−−−−−  MgRsin β−mgRcos βtan φ     =2MR(gsin β+gcos βtan φ)  tan φ=((−Msin β)/((2M+m)cos β))  ⇒  tan φ=−((tan β)/((2+(m/M))))
MgRsinβNRsinϕ=2MR2αNcosϕ=mgcosβNsinϕ+mgsinβ=maa=αRMgRsinβmgRcosβtanϕ=2MR(gsinβ+gcosβtanϕ)tanϕ=Msinβ(2M+m)cosβtanϕ=tanβ(2+mM)
Commented by ajfour last updated on 26/Jan/21
but then either, φ<0  or φ>(π/2)  I wonder which one?  what if m→0 ?
buttheneither,ϕ<0orϕ>π2Iwonderwhichone?whatifm0?
Commented by mr W last updated on 26/Jan/21
since N must be >0, so φ<0 is  correct.
sinceNmustbe>0,soϕ<0iscorrect.
Commented by ajfour last updated on 26/Jan/21
(N/m)=((gcos β)/(cos φ))=((a−gsin β)/(sin φ))  a=((Mgsin β)/((M+(I_(cm) /R^2 ))))=((gsin β)/2)  ⇒  tan φ=−((tan β)/2)  But  (N/m)>0  ⇒  ((gcos β)/(cos φ))>0  and even  (N/m)>0 ⇒  ((−gsin β)/(sin φ))>0  ⇒ cos φ>0 ,  sin φ<0  ⇒ −(π/2) <−tan^(−1) (((tan β)/2))= φ < 0
Nm=gcosβcosϕ=agsinβsinϕa=Mgsinβ(M+IcmR2)=gsinβ2tanϕ=tanβ2ButNm>0gcosβcosϕ>0andevenNm>0gsinβsinϕ>0cosϕ>0,sinϕ<0π2<tan1(tanβ2)=ϕ<0
Answered by mr W last updated on 26/Jan/21
Commented by mr W last updated on 26/Jan/21
the question is the same as if a small  mass is suspended with a string on  the center of the cylinder.  say the length of the string is r.  N cos φ=mg cos β  ⇒N=((cos β)/(cos φ))mg  mg sin β−N sin φ=ma  ⇒a=(sin β−cos β tan φ)g  I_1 =I_0 +MR^2 =2MR^2   I_1 α=Mg R sin β+NRsin φ  ⇒α=(sin β+(m/M)×cos β tan φ)(g/(2R))  a=αR  (sin β+(m/M)×cos β tan φ)(g/2)=(sin β−cos β tan φ)g  (2+(m/M)) tan φ=tan β  ⇒tan φ=((tan β)/(2+(m/M)))  ⇒φ=tan^(−1) (((tan β)/(2+(m/M))))  it is to see that φ<β and this is  independent from the length of the  string r! in our case r=R.
thequestionisthesameasifasmallmassissuspendedwithastringonthecenterofthecylinder.saythelengthofthestringisr.Ncosϕ=mgcosβN=cosβcosϕmgmgsinβNsinϕ=maa=(sinβcosβtanϕ)gI1=I0+MR2=2MR2I1α=MgRsinβ+NRsinϕα=(sinβ+mM×cosβtanϕ)g2Ra=αR(sinβ+mM×cosβtanϕ)g2=(sinβcosβtanϕ)g(2+mM)tanϕ=tanβtanϕ=tanβ2+mMϕ=tan1(tanβ2+mM)itistoseethatϕ<βandthisisindependentfromthelengthofthestringr!inourcaser=R.
Answered by mr W last updated on 27/Jan/21
Commented by mr W last updated on 28/Jan/21
friction coefficient between ball  and cylinder =μ  N cos φ+μN sin φ=mg cos β  ⇒N=((cos β)/(cos φ+μ sin φ))mg  ma=N sin φ−μN cos φ+mg sin β  ⇒a=[((cos β (tan φ−μ))/(1+μ tan φ))+sin β]g  2MR^2 α=MgR sin β−NR sin φ−μNR(1−cos φ)  2Rα={sin β−(m/M)×((cos β(μ+sin φ−μ cos φ))/(cos φ+μ sin φ))}g  2a={sin β−(m/M)×((cos β(μ+sin φ−μ cos φ))/(cos φ+μ sin φ))}g  ((2(tan φ−μ))/(1+μ tan φ))+2tan β=tan β−(m/M)×((μ+sin φ−μ cos φ)/(cos φ+μ sin φ))  ⇒((((mμ)/(Mcos φ))+(2+(m/M))(tan φ−μ))/(1+μ tan φ))=−tan β  let λ=(m/M), η=tan β  ((λμ+(2+λ)(sin φ−μ cos φ))/(cos φ+μ sin φ))=−η  (2+λ+μη)sin φ−(2μ+λμ−η) cos φ=−λμ  let δ=tan^(−1) ((2μ+λμ−η)/(2+λ+μη))  sin (φ−δ)=−((λμ)/( (√((2+λ+μη)^2 +(2μ+λμ−η)^2 ))))  φ=tan^(−1) ((2μ+λμ−η)/(2+λ+μη))−sin^(−1) ((λμ)/( (√((2+λ+μη)^2 +(2μ+λμ−η)^2 ))))  ⇒φ=tan^(−1) (((2+(m/M))μ−tan β)/(2+(m/M)+μ tan β))−sin^(−1) (((μm)/M)/( (√((1+μ^2 ) [tan^2  β+(2+(m/M))^2 ]))))    examples:  β=30°, (m/M)=0.2, μ=1 ⇒φ=26.7306°  β=30°, (m/M)=0.2, μ=0.5 ⇒φ=9.6067°  β=30°, (m/M)=0.2, μ=((√3)/6)=0.289 ⇒φ=0  β=30°, (m/M)=0.2, μ=0 ⇒φ=−14.7047°
frictioncoefficientbetweenballandcylinder=μNcosϕ+μNsinϕ=mgcosβN=cosβcosϕ+μsinϕmgma=NsinϕμNcosϕ+mgsinβa=[cosβ(tanϕμ)1+μtanϕ+sinβ]g2MR2α=MgRsinβNRsinϕμNR(1cosϕ)2Rα={sinβmM×cosβ(μ+sinϕμcosϕ)cosϕ+μsinϕ}g2a={sinβmM×cosβ(μ+sinϕμcosϕ)cosϕ+μsinϕ}g2(tanϕμ)1+μtanϕ+2tanβ=tanβmM×μ+sinϕμcosϕcosϕ+μsinϕmμMcosϕ+(2+mM)(tanϕμ)1+μtanϕ=tanβletλ=mM,η=tanβλμ+(2+λ)(sinϕμcosϕ)cosϕ+μsinϕ=η(2+λ+μη)sinϕ(2μ+λμη)cosϕ=λμletδ=tan12μ+λμη2+λ+μηsin(ϕδ)=λμ(2+λ+μη)2+(2μ+λμη)2ϕ=tan12μ+λμη2+λ+μηsin1λμ(2+λ+μη)2+(2μ+λμη)2ϕ=tan1(2+mM)μtanβ2+mM+μtanβsin1μmM(1+μ2)[tan2β+(2+mM)2]examples:β=30°,mM=0.2,μ=1ϕ=26.7306°β=30°,mM=0.2,μ=0.5ϕ=9.6067°β=30°,mM=0.2,μ=36=0.289ϕ=0β=30°,mM=0.2,μ=0ϕ=14.7047°
Commented by ajfour last updated on 28/Jan/21
Great generalisation, Sir.  Thanks for the analysis.
Greatgeneralisation,Sir.Thanksfortheanalysis.

Leave a Reply

Your email address will not be published. Required fields are marked *