Question Number 130350 by ajfour last updated on 24/Jan/21

Commented by ajfour last updated on 24/Jan/21

Answered by mr W last updated on 25/Jan/21

Commented by mr W last updated on 25/Jan/21

Commented by ajfour last updated on 26/Jan/21

Commented by mr W last updated on 26/Jan/21

Commented by ajfour last updated on 26/Jan/21

Commented by ajfour last updated on 26/Jan/21

Commented by mr W last updated on 26/Jan/21

Commented by ajfour last updated on 26/Jan/21

Answered by mr W last updated on 26/Jan/21

Commented by mr W last updated on 26/Jan/21

Answered by mr W last updated on 27/Jan/21

Commented by mr W last updated on 28/Jan/21
![friction coefficient between ball and cylinder =μ N cos φ+μN sin φ=mg cos β ⇒N=((cos β)/(cos φ+μ sin φ))mg ma=N sin φ−μN cos φ+mg sin β ⇒a=[((cos β (tan φ−μ))/(1+μ tan φ))+sin β]g 2MR^2 α=MgR sin β−NR sin φ−μNR(1−cos φ) 2Rα={sin β−(m/M)×((cos β(μ+sin φ−μ cos φ))/(cos φ+μ sin φ))}g 2a={sin β−(m/M)×((cos β(μ+sin φ−μ cos φ))/(cos φ+μ sin φ))}g ((2(tan φ−μ))/(1+μ tan φ))+2tan β=tan β−(m/M)×((μ+sin φ−μ cos φ)/(cos φ+μ sin φ)) ⇒((((mμ)/(Mcos φ))+(2+(m/M))(tan φ−μ))/(1+μ tan φ))=−tan β let λ=(m/M), η=tan β ((λμ+(2+λ)(sin φ−μ cos φ))/(cos φ+μ sin φ))=−η (2+λ+μη)sin φ−(2μ+λμ−η) cos φ=−λμ let δ=tan^(−1) ((2μ+λμ−η)/(2+λ+μη)) sin (φ−δ)=−((λμ)/( (√((2+λ+μη)^2 +(2μ+λμ−η)^2 )))) φ=tan^(−1) ((2μ+λμ−η)/(2+λ+μη))−sin^(−1) ((λμ)/( (√((2+λ+μη)^2 +(2μ+λμ−η)^2 )))) ⇒φ=tan^(−1) (((2+(m/M))μ−tan β)/(2+(m/M)+μ tan β))−sin^(−1) (((μm)/M)/( (√((1+μ^2 ) [tan^2 β+(2+(m/M))^2 ])))) examples: β=30°, (m/M)=0.2, μ=1 ⇒φ=26.7306° β=30°, (m/M)=0.2, μ=0.5 ⇒φ=9.6067° β=30°, (m/M)=0.2, μ=((√3)/6)=0.289 ⇒φ=0 β=30°, (m/M)=0.2, μ=0 ⇒φ=−14.7047°](https://www.tinkutara.com/question/Q130663.png)
Commented by ajfour last updated on 28/Jan/21
