Question Number 130369 by gowsalya last updated on 24/Jan/21
Answered by Olaf last updated on 24/Jan/21
$$\Omega\:=\:\int_{\mid{z}\mid=\mathrm{1}} {xdz} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\theta{d}\left(\mathrm{cos}\theta+{i}\mathrm{sin}\theta\right) \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\theta\left(−\mathrm{sin}\theta+{i}\mathrm{cos}\theta\right){d}\theta \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2}\theta+{i}\frac{\mathrm{1}+\mathrm{cos2}\theta}{\mathrm{2}}\right){d}\theta \\ $$$$\Omega\:=\:\left[\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos2}\theta+{i}\frac{\theta+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2}\theta}{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \\ $$$$\Omega\:=\:{i}\pi \\ $$
Commented by gowsalya last updated on 25/Jan/21
thank u