Menu Close

Question-130399




Question Number 130399 by gowsalya last updated on 25/Jan/21
Answered by Dwaipayan Shikari last updated on 25/Jan/21
f(x)=Σ_(n=0) ^∞ a_n x^n =a_0 +a_1 x+a_2 x^2 +a_3 x^3 +...  f(0)=a_0   f′(0)=a_1   f′′(0)=2a_2   f′′′(0)=6a_3   f^(iv) (0)=24a_4   ..f^n (0)=n!a_n  ⇒((f^n (0))/(n!))=a_n ⇒((f^n (0))/(n!))x^n =a_n x^n   ⇒Σ_(n=0) ^∞ ((f^n (0))/(n!))x^n =Σ_(n=0) ^∞ a_n x^n =f(x)
$${f}\left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} {x}^{{n}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} +… \\ $$$${f}\left(\mathrm{0}\right)={a}_{\mathrm{0}} \\ $$$${f}'\left(\mathrm{0}\right)={a}_{\mathrm{1}} \\ $$$${f}''\left(\mathrm{0}\right)=\mathrm{2}{a}_{\mathrm{2}} \\ $$$${f}'''\left(\mathrm{0}\right)=\mathrm{6}{a}_{\mathrm{3}} \\ $$$${f}^{{iv}} \left(\mathrm{0}\right)=\mathrm{24}{a}_{\mathrm{4}} \\ $$$$..{f}^{{n}} \left(\mathrm{0}\right)={n}!{a}_{{n}} \:\Rightarrow\frac{{f}^{{n}} \left(\mathrm{0}\right)}{{n}!}={a}_{{n}} \Rightarrow\frac{{f}^{{n}} \left(\mathrm{0}\right)}{{n}!}{x}^{{n}} ={a}_{{n}} {x}^{{n}} \\ $$$$\Rightarrow\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{f}^{{n}} \left(\mathrm{0}\right)}{{n}!}{x}^{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} {x}^{{n}} ={f}\left({x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *