Question-130472 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 130472 by shaker last updated on 26/Jan/21 Answered by mathmax by abdo last updated on 26/Jan/21 letw(x)=∑k=1n(2k−1)xk⇒w(x)=2∑k=1nkxk−∑k=1nxkwehave∑k=0nxk=xn+1−1x−1(x≠1)⇒∑k=1nkxk−1=nxn+1−(n+1)xn+1(x−1)2⇒∑k=1nkxk=x(x−1)2(nxn+1−(n+1)xn+1)⇒w(x)=2x(x−1)2(nxn+1−(n+1)xn+1)−(11−x−1)=2x(nxn+1−(n+1)xn+1)(x−1)2−x(1−x)(1−x)2=2x(nxn+1−(n+1)xn+1)+x2−x(x−1)2⇒f(x)=2nxn+2−2(n+1)xn+1+x2+x×1x−1−n(x−1)=2nxn+2−2(n+1)xn+1+x2+x−n(x−1)(x−1)2wedothechangementx−1=t(t→0)⇒f(x)=f(t+1)=2n(t+1)n+2−2(n+1)(t+1)n+1+(t+1)2+t−ntt2wehave(1+t)n+2∼1+(n+2)t+(n+2)(n+1)2t2(1+t)n+1∼1+(n+1)t+(n+1)n2t2(t+1)2+t∼1⇒2n(t+1)n+2−2(n+1)(t+1)n+1+(t+1)2+t∼2n{1+(n+2)t+(n+2)(n+1)2t2}−2(n+1)(1+(n+1)t+(n+1)n2t2)+1….becontinued… Answered by mathmax by abdo last updated on 26/Jan/21 inthiscaseitbettertouse[hospitaltheoremletu(x)=x+3x2+5x3+….+(2n−1)xn−nandv(x)=x−1u′(x)=1+6x+15x2+….+n(2n−1)xn−12x+3x2+5x3+….+(2n−1)xn⇒limx→1u′(x)=1+6+15+….+n(2n−1)21+3+5+….+2n−1v′(x)=1⇒limx→1v′(x)=1also∑k=1nk(2k−1)=2∑k=1nk2−∑k=1nk=2.n(n+1)(2n+1)6−n(n+1)2=n(n+1)(2n+1)3−n(n+1)2=n(n+1){2n+13−12}=n(n+1)(4n+2−36)=n(n+1)(4n−1)6∑k=1n(2k−1)=2∑k=1nk−∑k=1nk=2n(n+1)2−n(n+1)2=n(n+1)2⇒limx→1(…)=n(n+1)(4n−1)62n(n+1)2=n(n+1)(4n−1)62n(n+1)=(4n−1)n(n+1)62 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: P-cos-pi-15-cos-2pi-15-cos-3pi-15-cos-4pi-15-cos-5pi-15-cos-6pi-15-cos-7pi-15-Next Next post: E-0-3-2-dy-1-y-2-5-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.