Menu Close

Question-130472




Question Number 130472 by shaker last updated on 26/Jan/21
Answered by mathmax by abdo last updated on 26/Jan/21
let w(x) =Σ_(k=1) ^n (2k−1)x^k  ⇒w(x)=2Σ_(k=1) ^n  kx^k −Σ_(k=1) ^n  x^k   we have Σ_(k=0) ^n  x^k  =((x^(n+1) −1)/(x−1))  (x≠1) ⇒Σ_(k=1) ^n  kx^(k−1)  =((nx^(n+1) −(n+1)x^n +1)/((x−1)^2 ))  ⇒Σ_(k=1) ^n kx^k  =(x/((x−1)^2 ))(nx^(n+1) −(n+1)x^n  +1) ⇒  w(x)=((2x)/((x−1)^2 ))(nx^(n+1) −(n+1)x^n +1)−((1/(1−x))−1)  =((2x(nx^(n+1) −(n+1)x^n +1))/((x−1)^2 ))−((x(1−x))/((1−x)^2 ))  =((2x(nx^(n+1) −(n+1)x^n  +1)+x^2 −x)/((x−1)^2 )) ⇒  f(x)=(((√(2nx^(n+2) −2(n+1)x^(n+1) +x^2  +x))×(1/(x−1))−n)/((x−1)))  =(((√(2nx^(n+2) −2(n+1)x^(n+1) +x^2  +x))−n(x−1))/((x−1)^2 )) we do the changement  x−1=t  (t→0) ⇒f(x)=f(t+1)  =(((√(2n(t+1)^(n+2) −2(n+1)(t+1)^(n+1) +(t+1)^2  +t))−nt)/t^2 )  we have (1+t)^(n+2)  ∼1+(n+2)t +(((n+2)(n+1))/2)t^2   (1+t)^(n+1) ∼1+(n+1)t+(((n+1)n)/2)t^2   (t+1)^2  +t ∼1 ⇒  2n(t+1)^(n+2) −2(n+1)(t+1)^(n+1) +(t+1)^2  +t  ∼2n{1+(n+2)t+(((n+2)(n+1))/2)t^2 }−2(n+1)(1+(n+1)t+(((n+1)n)/2)t^2 )+1  ....be continued...
letw(x)=k=1n(2k1)xkw(x)=2k=1nkxkk=1nxkwehavek=0nxk=xn+11x1(x1)k=1nkxk1=nxn+1(n+1)xn+1(x1)2k=1nkxk=x(x1)2(nxn+1(n+1)xn+1)w(x)=2x(x1)2(nxn+1(n+1)xn+1)(11x1)=2x(nxn+1(n+1)xn+1)(x1)2x(1x)(1x)2=2x(nxn+1(n+1)xn+1)+x2x(x1)2f(x)=2nxn+22(n+1)xn+1+x2+x×1x1n(x1)=2nxn+22(n+1)xn+1+x2+xn(x1)(x1)2wedothechangementx1=t(t0)f(x)=f(t+1)=2n(t+1)n+22(n+1)(t+1)n+1+(t+1)2+tntt2wehave(1+t)n+21+(n+2)t+(n+2)(n+1)2t2(1+t)n+11+(n+1)t+(n+1)n2t2(t+1)2+t12n(t+1)n+22(n+1)(t+1)n+1+(t+1)2+t2n{1+(n+2)t+(n+2)(n+1)2t2}2(n+1)(1+(n+1)t+(n+1)n2t2)+1.becontinued
Answered by mathmax by abdo last updated on 26/Jan/21
in this case it better to use[hospital theorem let  u(x)=(√(x+3x^2  +5x^3 +....+(2n−1)x^n ))−n and v(x)=x−1  u^′ (x)=((1+6x+15x^2 +....+n(2n−1)x^(n−1) )/(2(√(x+3x^2 +5x^3 +....+(2n−1)x^n )))) ⇒  lim_(x→1) u^′ (x)=((1+6+15+....+n(2n−1))/(2(√(1+3+5+....+2n−1))))  v^′ (x)=1 ⇒lim_(x→1) v^′ (x)=1  also  Σ_(k=1) ^n k(2k−1) =2Σ_(k=1) ^n  k^2 −Σ_(k=1) ^n  k =2.((n(n+1)(2n+1))/6)−((n(n+1))/2)  =((n(n+1)(2n+1))/3)−((n(n+1))/2)=n(n+1){((2n+1)/3)−(1/2)}  =n(n+1)(((4n+2−3)/6)) =((n(n+1)(4n−1))/6)  Σ_(k=1) ^n (2k−1) =2Σ_(k=1) ^n k−Σ_(k=1) ^n  k =2((n(n+1))/2)−((n(n+1))/2)  =((n(n+1))/2) ⇒lim_(x→1) (...)  =(((n(n+1)(4n−1))/6)/(2(√((n(n+1))/2)))) =((n(n+1)(4n−1))/(6(√2)(√(n(n+1)))))  =(((4n−1)(√(n(n+1))))/(6(√2)))
inthiscaseitbettertouse[hospitaltheoremletu(x)=x+3x2+5x3+.+(2n1)xnnandv(x)=x1u(x)=1+6x+15x2+.+n(2n1)xn12x+3x2+5x3+.+(2n1)xnlimx1u(x)=1+6+15+.+n(2n1)21+3+5+.+2n1v(x)=1limx1v(x)=1alsok=1nk(2k1)=2k=1nk2k=1nk=2.n(n+1)(2n+1)6n(n+1)2=n(n+1)(2n+1)3n(n+1)2=n(n+1){2n+1312}=n(n+1)(4n+236)=n(n+1)(4n1)6k=1n(2k1)=2k=1nkk=1nk=2n(n+1)2n(n+1)2=n(n+1)2limx1()=n(n+1)(4n1)62n(n+1)2=n(n+1)(4n1)62n(n+1)=(4n1)n(n+1)62

Leave a Reply

Your email address will not be published. Required fields are marked *