Menu Close

Question-130733




Question Number 130733 by bemath last updated on 28/Jan/21
Commented by EDWIN88 last updated on 28/Jan/21
10^(e−1)
$$\mathrm{10}^{{e}−\mathrm{1}} \\ $$
Answered by Dwaipayan Shikari last updated on 28/Jan/21
10(√(10((10((10((10..))^(1/5) ))^(1/4) ))^(1/3) ))  =10^(1+(1/2)+(1/6)+(1/(24))+....) =10^(e−1)
$$\mathrm{10}\sqrt{\mathrm{10}\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{10}\sqrt[{\mathrm{5}}]{\mathrm{10}..}}}} \\ $$$$=\mathrm{10}^{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{24}}+….} =\mathrm{10}^{{e}−\mathrm{1}} \\ $$
Commented by bemath last updated on 28/Jan/21
1+(1/(2!))+(1/(3!))+(1/(4!))+(1/(5!))+... = e−1 ?
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+\frac{\mathrm{1}}{\mathrm{5}!}+…\:=\:\mathrm{e}−\mathrm{1}\:?\: \\ $$
Commented by Dwaipayan Shikari last updated on 28/Jan/21
yes
$${yes} \\ $$
Commented by bemath last updated on 28/Jan/21
e^x  = 1+x+(x^2 /(2!))+(x^3 /(3!))+(x^4 /(4!))+...  e^1 =1+1+(1/(2!))+(1/(3!))+(1/(4!))+(1/(5!))+...   yes...
$$\mathrm{e}^{\mathrm{x}} \:=\:\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}!}+… \\ $$$$\mathrm{e}^{\mathrm{1}} =\mathrm{1}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+\frac{\mathrm{1}}{\mathrm{5}!}+…\: \\ $$$$\mathrm{yes}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *