Menu Close

Question-130936




Question Number 130936 by mathlove last updated on 30/Jan/21
Answered by floor(10²Eta[1]) last updated on 30/Jan/21
15≡1(mod 7)  so 15^n ≡1^n =1(mod 7)  ⇒3^3^(2007)  ×15^2^(7777)  ≡3^3^(2007)  (mod 7)  but for all n∈N, 3^n ≡3(mod 6)  proof: 3^n ≡3(mod 6)⇒6∣3^n −3  6∣3(3^(n−1) −1)=3(2×(3^(n−2) +3^(n−3) +...+3+1)  which is clearly a multiple of 6.    ⇒3^(2007) =6q+3  ⇒3^3^(2007)  =3^(6q) ×3^3 ≡3^3 =27≡6 (mod 7)  remainder is 6
$$\mathrm{15}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{so}\:\mathrm{15}^{\mathrm{n}} \equiv\mathrm{1}^{\mathrm{n}} =\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{3}^{\mathrm{2007}} } ×\mathrm{15}^{\mathrm{2}^{\mathrm{7777}} } \equiv\mathrm{3}^{\mathrm{3}^{\mathrm{2007}} } \left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{but}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N},\:\mathrm{3}^{\mathrm{n}} \equiv\mathrm{3}\left(\mathrm{mod}\:\mathrm{6}\right) \\ $$$$\mathrm{proof}:\:\mathrm{3}^{\mathrm{n}} \equiv\mathrm{3}\left(\mathrm{mod}\:\mathrm{6}\right)\Rightarrow\mathrm{6}\mid\mathrm{3}^{\mathrm{n}} −\mathrm{3} \\ $$$$\mathrm{6}\mid\mathrm{3}\left(\mathrm{3}^{\mathrm{n}−\mathrm{1}} −\mathrm{1}\right)=\mathrm{3}\left(\mathrm{2}×\left(\mathrm{3}^{\mathrm{n}−\mathrm{2}} +\mathrm{3}^{\mathrm{n}−\mathrm{3}} +…+\mathrm{3}+\mathrm{1}\right)\right. \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{clearly}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{6}. \\ $$$$ \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{2007}} =\mathrm{6q}+\mathrm{3} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{3}^{\mathrm{2007}} } =\mathrm{3}^{\mathrm{6q}} ×\mathrm{3}^{\mathrm{3}} \equiv\mathrm{3}^{\mathrm{3}} =\mathrm{27}\equiv\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{remainder}\:\mathrm{is}\:\mathrm{6} \\ $$
Commented by mathlove last updated on 30/Jan/21
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *