Menu Close

Question-14215




Question Number 14215 by tawa tawa last updated on 29/May/17
Answered by ajfour last updated on 29/May/17
•(5).  x=12t^2 −2t^3 =2t^2 (6−t)     ....(i)    at t=3s ,  x=18×3=54m  v=(dx/dt)=24t−6t^2 =6t(4−t)   ...(ii)  at t=3s,  v=18(4−3)=18m/s  a=(dv/dt)=24−12t=12(2−t)   ...(iii)  at t=3s,  a=12(2−3)=−12m/s^2   x is maximum when v=0, i.e.  at t=4s       [see (ii)]  x_(max) =2t^2 (6−t)∣_(t=4s)            =2(16)(2)=64m  v is maximum when a=0  which occurs at t=2s  [see (iii)]  v_(max) =6t(4−t)∣_(t=2s)            =12(2)=24m/s^2   the acceleration when it is  not moving other than at t=0,  is a at t=4s  a=12(2−t)∣_(t=4s) = −24m/s^2   average velocity between  t=0 and t=3s is  v^� =((x_3 −x_0 )/(3−0))=((54m)/(3s))=18m/s.  •(6).  let that the vehicle accelerates  for time t_1 .  v=u+at  ⇒   20=0+2t_1   t_1 =10s  it starts deceleeating thereafter  and comes to a stop .  let  time taken to stop since  t=10s, be t_2 :  v=u+at  ⇒  0=20−1×t_2   t_2 =20s.  Entire time taken from rest  to stop is  = t_1 +t_2 =10s+20s=30s.  total distance travelled :  s=s_1 +s_2     from s=ut+(1/2)at^2   s=[0+(1/2)(2)(10)^2 ]+[20×20−(1/2)(1)(20)^2 ]    =100+200 =300m .
$$\bullet\left(\mathrm{5}\right). \\ $$$${x}=\mathrm{12}{t}^{\mathrm{2}} −\mathrm{2}{t}^{\mathrm{3}} =\mathrm{2}{t}^{\mathrm{2}} \left(\mathrm{6}−{t}\right)\:\:\:\:\:….\left({i}\right) \\ $$$$ \\ $$$${at}\:{t}=\mathrm{3}{s}\:,\:\:{x}=\mathrm{18}×\mathrm{3}=\mathrm{54}{m} \\ $$$${v}=\frac{{dx}}{{dt}}=\mathrm{24}{t}−\mathrm{6}{t}^{\mathrm{2}} =\mathrm{6}{t}\left(\mathrm{4}−{t}\right)\:\:\:…\left({ii}\right) \\ $$$${at}\:{t}=\mathrm{3}{s},\:\:{v}=\mathrm{18}\left(\mathrm{4}−\mathrm{3}\right)=\mathrm{18}{m}/{s} \\ $$$${a}=\frac{{dv}}{{dt}}=\mathrm{24}−\mathrm{12}{t}=\mathrm{12}\left(\mathrm{2}−{t}\right)\:\:\:…\left({iii}\right) \\ $$$${at}\:{t}=\mathrm{3}{s},\:\:{a}=\mathrm{12}\left(\mathrm{2}−\mathrm{3}\right)=−\mathrm{12}{m}/{s}^{\mathrm{2}} \\ $$$${x}\:{is}\:{maximum}\:{when}\:{v}=\mathrm{0},\:{i}.{e}. \\ $$$${at}\:{t}=\mathrm{4}{s}\:\:\:\:\:\:\:\left[{see}\:\left({ii}\right)\right] \\ $$$${x}_{{max}} =\mathrm{2}{t}^{\mathrm{2}} \left(\mathrm{6}−{t}\right)\mid_{{t}=\mathrm{4}{s}} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\mathrm{16}\right)\left(\mathrm{2}\right)=\mathrm{64}{m} \\ $$$${v}\:{is}\:{maximum}\:{when}\:{a}=\mathrm{0} \\ $$$${which}\:{occurs}\:{at}\:{t}=\mathrm{2}{s}\:\:\left[{see}\:\left({iii}\right)\right] \\ $$$${v}_{{max}} =\mathrm{6}{t}\left(\mathrm{4}−{t}\right)\mid_{{t}=\mathrm{2}{s}} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{12}\left(\mathrm{2}\right)=\mathrm{24}{m}/{s}^{\mathrm{2}} \\ $$$${the}\:{acceleration}\:{when}\:{it}\:{is} \\ $$$${not}\:{moving}\:{other}\:{than}\:{at}\:{t}=\mathrm{0}, \\ $$$${is}\:\boldsymbol{{a}}\:{at}\:{t}=\mathrm{4}{s} \\ $$$${a}=\mathrm{12}\left(\mathrm{2}−{t}\right)\mid_{{t}=\mathrm{4}{s}} =\:−\mathrm{24}{m}/{s}^{\mathrm{2}} \\ $$$${average}\:{velocity}\:{between} \\ $$$${t}=\mathrm{0}\:{and}\:{t}=\mathrm{3}{s}\:{is} \\ $$$$\bar {{v}}=\frac{{x}_{\mathrm{3}} −{x}_{\mathrm{0}} }{\mathrm{3}−\mathrm{0}}=\frac{\mathrm{54}{m}}{\mathrm{3}{s}}=\mathrm{18}{m}/{s}. \\ $$$$\bullet\left(\mathrm{6}\right). \\ $$$${let}\:{that}\:{the}\:{vehicle}\:{accelerates} \\ $$$${for}\:{time}\:\boldsymbol{{t}}_{\mathrm{1}} . \\ $$$$\boldsymbol{{v}}=\boldsymbol{{u}}+\boldsymbol{{at}}\:\:\Rightarrow\:\:\:\mathrm{20}=\mathrm{0}+\mathrm{2}{t}_{\mathrm{1}} \\ $$$${t}_{\mathrm{1}} =\mathrm{10}{s} \\ $$$${it}\:{starts}\:{deceleeating}\:{thereafter} \\ $$$${and}\:{comes}\:{to}\:{a}\:{stop}\:. \\ $$$${let}\:\:{time}\:{taken}\:{to}\:{stop}\:{since} \\ $$$${t}=\mathrm{10}{s},\:{be}\:{t}_{\mathrm{2}} : \\ $$$$\boldsymbol{{v}}=\boldsymbol{{u}}+\boldsymbol{{at}}\:\:\Rightarrow\:\:\mathrm{0}=\mathrm{20}−\mathrm{1}×{t}_{\mathrm{2}} \\ $$$${t}_{\mathrm{2}} =\mathrm{20}{s}. \\ $$$${Entire}\:{time}\:{taken}\:{from}\:{rest} \\ $$$${to}\:{stop}\:{is}\:\:=\:{t}_{\mathrm{1}} +{t}_{\mathrm{2}} =\mathrm{10}{s}+\mathrm{20}{s}=\mathrm{30}{s}. \\ $$$${total}\:{distance}\:{travelled}\:: \\ $$$${s}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \\ $$$$\:\:{from}\:\boldsymbol{{s}}=\boldsymbol{{ut}}+\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{at}}^{\mathrm{2}} \\ $$$$\boldsymbol{{s}}=\left[\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\right)\left(\mathrm{10}\right)^{\mathrm{2}} \right]+\left[\mathrm{20}×\mathrm{20}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\right)\left(\mathrm{20}\right)^{\mathrm{2}} \right] \\ $$$$\:\:=\mathrm{100}+\mathrm{200}\:=\mathrm{300}\boldsymbol{{m}}\:. \\ $$
Commented by tawa tawa last updated on 29/May/17
I really appreciate your time. God bless you sir.  i must have an As in my mathematics and physics.
$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{i}\:\mathrm{must}\:\mathrm{have}\:\mathrm{an}\:\mathrm{As}\:\mathrm{in}\:\mathrm{my}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{physics}. \\ $$
Commented by ajfour last updated on 29/May/17
Commented by ajfour last updated on 29/May/17
for  •(6).
$${for}\:\:\bullet\left(\mathrm{6}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *