Menu Close

Question-144268




Question Number 144268 by aliibrahim1 last updated on 23/Jun/21
Answered by imjagoll last updated on 24/Jun/21
consider ∡CDA = 90°−α and   ∡CAD=90°−α so x = CD=3 cm
$$\mathrm{consider}\:\measuredangle\mathrm{CDA}\:=\:\mathrm{90}°−\alpha\:\mathrm{and}\: \\ $$$$\measuredangle\mathrm{CAD}=\mathrm{90}°−\alpha\:\mathrm{so}\:\mathrm{x}\:=\:\mathrm{CD}=\mathrm{3}\:\mathrm{cm} \\ $$
Commented by som(math1967) last updated on 24/Jun/21
Is ∡BAC=90° ?
$${Is}\:\measuredangle{BAC}=\mathrm{90}°\:?\: \\ $$
Answered by mr W last updated on 24/Jun/21
4^2 =5^2 +x^2 −10x cos 2α  ⇒cos 2α=((x^2 +9)/(10x))  AD^2 =3^2 +x^2 −6x cos 2α  AD^2 =3^2 +x^2 −6x×((x^2 +9)/(10x))  ⇒AD^2 =((2x^2 +18)/5)  2^2 =AD^2 +4^2 −8ADcos α  ((2x^2 +18)/5)+12=8ADcos α  ((x^2 +39)/5)=4ADcos α  (((x^2 +39)/5))^2 =8×((2x^2 +18)/5)×(cos 2α+1)  (x^2 +39)^2 x=8(x^2 +9)(x^2 +10x+9)  ⇒x=1,3,9  only x=3 is valid.
$$\mathrm{4}^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{10}{x}\:\mathrm{cos}\:\mathrm{2}\alpha \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{2}\alpha=\frac{{x}^{\mathrm{2}} +\mathrm{9}}{\mathrm{10}{x}} \\ $$$${AD}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{6}{x}\:\mathrm{cos}\:\mathrm{2}\alpha \\ $$$${AD}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{6}{x}×\frac{{x}^{\mathrm{2}} +\mathrm{9}}{\mathrm{10}{x}} \\ $$$$\Rightarrow{AD}^{\mathrm{2}} =\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{18}}{\mathrm{5}} \\ $$$$\mathrm{2}^{\mathrm{2}} ={AD}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{8}{AD}\mathrm{cos}\:\alpha \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{18}}{\mathrm{5}}+\mathrm{12}=\mathrm{8}{AD}\mathrm{cos}\:\alpha \\ $$$$\frac{{x}^{\mathrm{2}} +\mathrm{39}}{\mathrm{5}}=\mathrm{4}{AD}\mathrm{cos}\:\alpha \\ $$$$\left(\frac{{x}^{\mathrm{2}} +\mathrm{39}}{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{8}×\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{18}}{\mathrm{5}}×\left(\mathrm{cos}\:\mathrm{2}\alpha+\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{2}} +\mathrm{39}\right)^{\mathrm{2}} {x}=\mathrm{8}\left({x}^{\mathrm{2}} +\mathrm{9}\right)\left({x}^{\mathrm{2}} +\mathrm{10}{x}+\mathrm{9}\right) \\ $$$$\Rightarrow{x}=\mathrm{1},\mathrm{3},\mathrm{9} \\ $$$${only}\:{x}=\mathrm{3}\:{is}\:{valid}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *