Menu Close

Question-144270




Question Number 144270 by enter last updated on 24/Jun/21
Answered by ArielVyny last updated on 24/Jun/21
we have (d/dx)(f(x))≥0  because   f'(x)-f(x)>=0  ((f(x)−f(1))/(x−1))=f′(1) f is continuous in 1 and derivable  f′(1)−f(1)≥0  ((f(x)−f(1))/(x−1))−f(1)≥0  f(x)−f(1)≥(x−1)f(1)  f(x)≥f(1)+(x−1)f(1)  f(x)≥xf(1)  x≥0 and  f(1)≥0 because f′(x)≥0 and f(0)=0  conclusion f(x)≥0    ” ></figure>
</div>
<div style= $${we}\:{have}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\geqslant\mathrm{0}\:\:{because}\: \\ $$f'(x)-f(x)>=0
$$\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}={f}'\left(\mathrm{1}\right)\:{f}\:{is}\:{continuous}\:{in}\:\mathrm{1}\:{and}\:{derivable} \\ $$$${f}'\left(\mathrm{1}\right)−{f}\left(\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}−{f}\left(\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}\right)−{f}\left(\mathrm{1}\right)\geqslant\left({x}−\mathrm{1}\right){f}\left(\mathrm{1}\right) \\ $$$${f}\left({x}\right)\geqslant{f}\left(\mathrm{1}\right)+\left({x}−\mathrm{1}\right){f}\left(\mathrm{1}\right) \\ $$$${f}\left({x}\right)\geqslant{xf}\left(\mathrm{1}\right)\:\:{x}\geqslant\mathrm{0}\:{and}\:\:{f}\left(\mathrm{1}\right)\geqslant\mathrm{0}\:{because}\:{f}'\left({x}\right)\geqslant\mathrm{0}\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\boldsymbol{{conclusion}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\geqslant\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *