Question-144270 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 144270 by enter last updated on 24/Jun/21 Answered by ArielVyny last updated on 24/Jun/21 $${we}\:{have}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\geqslant\mathrm{0}\:\:{because}\: \\ $$f'(x)-f(x)>=0 $$\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}={f}'\left(\mathrm{1}\right)\:{f}\:{is}\:{continuous}\:{in}\:\mathrm{1}\:{and}\:{derivable} \\ $$$${f}'\left(\mathrm{1}\right)−{f}\left(\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}−{f}\left(\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}\right)−{f}\left(\mathrm{1}\right)\geqslant\left({x}−\mathrm{1}\right){f}\left(\mathrm{1}\right) \\ $$$${f}\left({x}\right)\geqslant{f}\left(\mathrm{1}\right)+\left({x}−\mathrm{1}\right){f}\left(\mathrm{1}\right) \\ $$$${f}\left({x}\right)\geqslant{xf}\left(\mathrm{1}\right)\:\:{x}\geqslant\mathrm{0}\:{and}\:\:{f}\left(\mathrm{1}\right)\geqslant\mathrm{0}\:{because}\:{f}'\left({x}\right)\geqslant\mathrm{0}\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\boldsymbol{{conclusion}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\geqslant\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-13194Next Next post: a-b-c-are-in-G-P-If-a-x-b-y-c-z-prove-that-1-x-1-z-are-in-A-P- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.