Question Number 144291 by SOMEDAVONG last updated on 24/Jun/21
Answered by som(math1967) last updated on 24/Jun/21
$${I}=\int_{\mathrm{0}} ^{\mathrm{2021}} \frac{\left(\mathrm{2021}−{x}\right)^{\mathrm{2021}} }{\left(\mathrm{2021}−{x}\right)^{\mathrm{2021}} +\left(\mathrm{2021}−\mathrm{2021}+{x}\right)^{\mathrm{2021}} }{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\mathrm{2021}} \frac{{x}^{\mathrm{2021}} +\left(\mathrm{2021}−{x}\right)^{\mathrm{2021}} }{{x}^{\mathrm{2021}} +\left(\mathrm{2021}−{x}\right)^{\mathrm{2021}} }{dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2021}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\right]_{\mathrm{0}} ^{\mathrm{2021}} =\frac{\mathrm{2021}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\boldsymbol{{a}}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\int_{\mathrm{0}} ^{{a}} \boldsymbol{{f}}\left(\boldsymbol{{a}}−\boldsymbol{{x}}\right)\boldsymbol{{dx}} \\ $$