Menu Close

Question-144496




Question Number 144496 by ajfour last updated on 25/Jun/21
Commented by ajfour last updated on 25/Jun/21
A rod is to be released   horizontally at height y   such that it hits ground  in vertical orientation.  Find y in terms of a,b,h.  Rod suffers an elastic  collision with the corner  of table.
Arodistobereleasedhorizontallyatheightysuchthatithitsgroundinverticalorientation.Findyintermsofa,b,h.Rodsuffersanelasticcollisionwiththecorneroftable.
Answered by mr W last updated on 27/Jun/21
Commented by mr W last updated on 27/Jun/21
u=(√(2gy))  (m/2)(u^2 −v^2 )=(1/2)×((mb^2 )/(12))×ω^2   ⇒12(u^2 −v^2 )=b^2 ω^2    ...(i)  mu−P=mv  P((b/2)−a)=((mb^2 )/(12))ω  m(u−v)((b/2)−a)=((mb^2 )/(12))ω  ⇒ 6(u−v)(b−2a)=b^2 ω   ...(ii)  (i)/(ii):  ωb=((2(u+v))/(1−((2a)/b)))  put into (ii):  6(u−v)(b−2a)=b((2(u+v))/(1−((2a)/b)))  3(1−((2a)/b))^2 (u−v)=u+v  ⇒v=((3(1−((2a)/b))^2 −1)/(3(1−((2a)/b))^2 +1))u=βu  v+u=((6(1−((2a)/b))^2 )/(3(1−((2a)/b))^2 +1))u  ⇒bω=((12(1−((2a)/b)))/(3(1−((2a)/b))^2 +1))u=αu  vt+(1/2)gt^2 =h−(b/2)  2vt+gt^2 =2h−b  t=((−v+(√(v^2 +g(2h−b))))/g)  ωt=(π/2)  2ω[(√(v^2 +g(2h−b)))−v]=πg   ...(iii)  2α[u(√(β^2 u^2 +g(2h−b)))−βu^2 ]=πgb  u(√(β^2 u^2 +g(2h−b)))=βu^2 +((πgb)/(2α))  (2h−b−((βπb)/α))u^2 =((π^2 gb^2 )/(4α^2 ))  (2h−b−((βπb)/α))2gy=((π^2 gb^2 )/(4α^2 ))  ⇒y=((π^2 b)/(8α^2 (((2h)/b)−1−((βπ)/α))))  with   α=((12(1−((2a)/b)))/(3(1−((2a)/b))^2 +1))  β=((3(1−((2a)/b))^2 −1)/(3(1−((2a)/b))^2 +1))
u=2gym2(u2v2)=12×mb212×ω212(u2v2)=b2ω2(i)muP=mvP(b2a)=mb212ωm(uv)(b2a)=mb212ω6(uv)(b2a)=b2ω(ii)(i)/(ii):ωb=2(u+v)12abputinto(ii):6(uv)(b2a)=b2(u+v)12ab3(12ab)2(uv)=u+vv=3(12ab)213(12ab)2+1u=βuv+u=6(12ab)23(12ab)2+1ubω=12(12ab)3(12ab)2+1u=αuvt+12gt2=hb22vt+gt2=2hbt=v+v2+g(2hb)gωt=π22ω[v2+g(2hb)v]=πg(iii)2α[uβ2u2+g(2hb)βu2]=πgbuβ2u2+g(2hb)=βu2+πgb2α(2hbβπbα)u2=π2gb24α2(2hbβπbα)2gy=π2gb24α2y=π2b8α2(2hb1βπα)withα=12(12ab)3(12ab)2+1β=3(12ab)213(12ab)2+1
Commented by ajfour last updated on 27/Jun/21
Thanks sir, our approach are the same, but you could bring it to completion; excellent soln.
Answered by ajfour last updated on 27/Jun/21
Let impulse received at   corner be J.  u=(√(2gy))  mv=mu−J  −h=vt−((gt^2 )/2)  gt^2 −2vt−2h=0  t=(v/g)+(√((v^2 /g^2 )+((2h)/g)))  ωt=(π/2)  I_0 ω=J((b/2)−a)  ⇒ I_0 ((π/(2t)))=m(u−v)((b/2)−a)  I_0 ((π/2))=((mv(u−v))/g)((b/2)−a)(1+(√(1+((2gh)/v^2 ))))  &   mg(y+h−(b/2))=(1/2)mv^2      +(1/2)I_0 ω^2   and as  y=(u^2 /(2g))  ⇒ mg((u^2 /(2g))+h−(b/2))=(1/2)mv^2     +(1/(2I_0 )){m(u−v)((b/2)−a)}^2  ..(I)  I_0 ((π/2))=  ((mv(u−v))/g)((b/2)−a)(1+(√(1+((2gh)/v^2 ))))     ...(II)  we solve for u and v from  eqs. (I)& (II)  and then    y=(u^2 /(2g))
LetimpulsereceivedatcornerbeJ.u=2gymv=muJh=vtgt22gt22vt2h=0t=vg+v2g2+2hgωt=π2I0ω=J(b2a)I0(π2t)=m(uv)(b2a)I0(π2)=mv(uv)g(b2a)(1+1+2ghv2)&mg(y+hb2)=12mv2+12I0ω2andasy=u22gmg(u22g+hb2)=12mv2+12I0{m(uv)(b2a)}2..(I)I0(π2)=mv(uv)g(b2a)(1+1+2ghv2)(II)wesolveforuandvfromeqs.(I)&(II)andtheny=u22g

Leave a Reply

Your email address will not be published. Required fields are marked *