Question Number 144496 by ajfour last updated on 25/Jun/21

Commented by ajfour last updated on 25/Jun/21

Answered by mr W last updated on 27/Jun/21

Commented by mr W last updated on 27/Jun/21
![u=(√(2gy)) (m/2)(u^2 −v^2 )=(1/2)×((mb^2 )/(12))×ω^2 ⇒12(u^2 −v^2 )=b^2 ω^2 ...(i) mu−P=mv P((b/2)−a)=((mb^2 )/(12))ω m(u−v)((b/2)−a)=((mb^2 )/(12))ω ⇒ 6(u−v)(b−2a)=b^2 ω ...(ii) (i)/(ii): ωb=((2(u+v))/(1−((2a)/b))) put into (ii): 6(u−v)(b−2a)=b((2(u+v))/(1−((2a)/b))) 3(1−((2a)/b))^2 (u−v)=u+v ⇒v=((3(1−((2a)/b))^2 −1)/(3(1−((2a)/b))^2 +1))u=βu v+u=((6(1−((2a)/b))^2 )/(3(1−((2a)/b))^2 +1))u ⇒bω=((12(1−((2a)/b)))/(3(1−((2a)/b))^2 +1))u=αu vt+(1/2)gt^2 =h−(b/2) 2vt+gt^2 =2h−b t=((−v+(√(v^2 +g(2h−b))))/g) ωt=(π/2) 2ω[(√(v^2 +g(2h−b)))−v]=πg ...(iii) 2α[u(√(β^2 u^2 +g(2h−b)))−βu^2 ]=πgb u(√(β^2 u^2 +g(2h−b)))=βu^2 +((πgb)/(2α)) (2h−b−((βπb)/α))u^2 =((π^2 gb^2 )/(4α^2 )) (2h−b−((βπb)/α))2gy=((π^2 gb^2 )/(4α^2 )) ⇒y=((π^2 b)/(8α^2 (((2h)/b)−1−((βπ)/α)))) with α=((12(1−((2a)/b)))/(3(1−((2a)/b))^2 +1)) β=((3(1−((2a)/b))^2 −1)/(3(1−((2a)/b))^2 +1))](https://www.tinkutara.com/question/Q144522.png)
Commented by ajfour last updated on 27/Jun/21
Thanks sir, our approach are the same, but you could bring it to completion; excellent soln.
Answered by ajfour last updated on 27/Jun/21
