Menu Close

Question-144602




Question Number 144602 by phally last updated on 26/Jun/21
Answered by mathmax by abdo last updated on 27/Jun/21
u_n =Σ_(k=1) ^n  ((cos(k))/(k(k+1))) ⇒lim_(n→∞) u_n =Σ_(k=1) ^∞  ((cosk)/(k(k+1)))  and ∣((cosk)/(k(k+1)))∣≤(1/(k(k+1)))≤(1/k^2 )  but Σ(1/k^2 ) cv ⇒  Σ_(n=1) ^∞  ((cosn)/(n(n+1))) cv uniformement
$$\mathrm{u}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{cos}\left(\mathrm{k}\right)}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \mathrm{u}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{cosk}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)} \\ $$$$\mathrm{and}\:\mid\frac{\mathrm{cosk}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}\mid\leqslant\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}\leqslant\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:\:\mathrm{but}\:\Sigma\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:\mathrm{cv}\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{cosn}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{cv}\:\mathrm{uniformement} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *