Menu Close

Question-144607




Question Number 144607 by aliibrahim1 last updated on 26/Jun/21
Answered by mathmax by abdo last updated on 27/Jun/21
A_n =Π_(k=2) ^n e(1−(1/k^2 ))^k^2   ⇒Π_(n=2) ^∞ (....)=lim_(n⌣∞) A_n   A_n =e^(n−1)  Π_(k=2) ^n  (1−(1/k^2 ))^k^2   ⇒log(A_n )=n−1+Σ_(k=2) ^n k^2  log(1−(1/k^2 ))  log^′ (1−x)=−(1/(1−x))=−(1+x+x^2 +o(x^3 )) ⇒  log(1−x)∼−x−(x^2 /2) ⇒log(1−(1/k^2 ))∼−(1/k^2 )−(1/(2k^4 )) ⇒  k^2 log(1−(1/k^2 ))∼−1−(1/(2k^2 )) ⇒Σ_(k=2) ^n k^2 log(...)∼−(n−1)  −(1/2)Σ_(k=2) ^n  (1/k^2 ) ⇒log(A_n )∼−(1/2)Σ_(k=2) ^n  (1/k^2 )  =−(1/2)(ξ_n (2)−1) =(1/2)−((ξ_n (2))/2) ⇒  lim_(n→+∞) log(A_n )=(1/2)−(π^2 /(12)) ⇒lim_(n→+∞) A_n =e^((1/2)−(π^2 /(12)))
An=k=2ne(11k2)k2n=2(.)=limnAnAn=en1k=2n(11k2)k2log(An)=n1+k=2nk2log(11k2)log(1x)=11x=(1+x+x2+o(x3))log(1x)xx22log(11k2)1k212k4k2log(11k2)112k2k=2nk2log()(n1)12k=2n1k2log(An)12k=2n1k2=12(ξn(2)1)=12ξn(2)2limn+log(An)=12π212limn+An=e12π212
Commented by aliibrahim1 last updated on 27/Jun/21
thx sir
thxsir
Commented by mathmax by abdo last updated on 28/Jun/21
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *