Menu Close

Question-144691




Question Number 144691 by mnjuly1970 last updated on 27/Jun/21
Answered by mnjuly1970 last updated on 27/Jun/21
   ans:       a ,b , c       ,  x , y , z   positive real   number :    titus lemma:    (a^2 /x^( 2 ) ) +(b^2 /y^( 2) )+(c^( 2) /z^( 2) ) ≥(((a+b+c)^( 2) )/(x+y+x)) ....✓        1:=  (1/x)+(1/y)+(1/z)        = (1^2 /x)+(1^2 /y)+(1^2 /z)≥(((1+1+1)^2 )/(x+y+z)) =(9/(x+y+z))         ∴ x+y +z ≥ 9  ....(∗)       M:= (x−1)(y−1)(z−1)            := (xy−x−y+1)(z−1)            :=[{ xyz −xy−xz−yz}=^? 0]+x+y+z−1             :=x+y+z−1≥9−1 =8 ....✓           ( ? ):  (1/x)+(1/y)+(1/z)=1 ⇒ xy+yz+zx−xyz=0
$$\:\:\:{ans}: \\ $$$$\:\:\:\:\:{a}\:,{b}\:,\:{c}\:\:\:\:\:\:\:,\:\:{x}\:,\:{y}\:,\:{z}\:\:\:{positive}\:{real} \\ $$$$\:{number}\:: \\ $$$$\:\:{titus}\:{lemma}: \\ $$$$\:\:\frac{{a}^{\mathrm{2}} }{{x}^{\:\mathrm{2}\:} }\:+\frac{{b}^{\mathrm{2}} }{{y}^{\:\mathrm{2}} }+\frac{{c}^{\:\mathrm{2}} }{{z}^{\:\mathrm{2}} }\:\geqslant\frac{\left({a}+{b}+{c}\right)^{\:\mathrm{2}} }{{x}+{y}+{x}}\:….\checkmark \\ $$$$\: \\ $$$$\:\:\:\mathrm{1}:=\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}^{\mathrm{2}} }{{x}}+\frac{\mathrm{1}^{\mathrm{2}} }{{y}}+\frac{\mathrm{1}^{\mathrm{2}} }{{z}}\geqslant\frac{\left(\mathrm{1}+\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} }{{x}+{y}+{z}}\:=\frac{\mathrm{9}}{{x}+{y}+{z}} \\ $$$$\:\:\:\:\:\:\:\therefore\:{x}+{y}\:+{z}\:\geqslant\:\mathrm{9}\:\:….\left(\ast\right) \\ $$$$\:\:\:\:\:\mathrm{M}:=\:\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)\left({z}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\left({xy}−{x}−{y}+\mathrm{1}\right)\left({z}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\::=\left[\left\{\:{xyz}\:−{xy}−{xz}−{yz}\right\}\overset{?} {=}\mathrm{0}\right]+{x}+{y}+{z}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\::={x}+{y}+{z}−\mathrm{1}\geqslant\mathrm{9}−\mathrm{1}\:=\mathrm{8}\:….\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\left(\:?\:\right):\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{1}\:\Rightarrow\:{xy}+{yz}+{zx}−{xyz}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *