Menu Close

Question-144875




Question Number 144875 by lapache last updated on 30/Jun/21
Answered by Dwaipayan Shikari last updated on 30/Jun/21
(1/(n!))∫_0 ^∞ x^n sin (x)e^(−x) dx  =(1/(2in!))∫_0 ^∞ x^n e^(−(1−i)x) −x^n e^(−(1+i)x) dx  =(1/(2in!))(((n!)/((1−i)^(n+1) ))−((n!)/((1+i)^(n+1) )))  =(2^((−n+1)/2) /(2i))(e^((iπ(n+1))/4) −e^((−iπ(n+1))/4) )=2^(−((n+1)/2)) sin ((π/4)(n+1))
$$\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\infty} {x}^{{n}} \mathrm{sin}\:\left({x}\right){e}^{−{x}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{in}!}\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−\left(\mathrm{1}−{i}\right){x}} −{x}^{{n}} {e}^{−\left(\mathrm{1}+{i}\right){x}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{in}!}\left(\frac{{n}!}{\left(\mathrm{1}−{i}\right)^{{n}+\mathrm{1}} }−\frac{{n}!}{\left(\mathrm{1}+{i}\right)^{{n}+\mathrm{1}} }\right) \\ $$$$=\frac{\mathrm{2}^{\frac{−{n}+\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}{i}}\left({e}^{\frac{{i}\pi\left({n}+\mathrm{1}\right)}{\mathrm{4}}} −{e}^{\frac{−{i}\pi\left({n}+\mathrm{1}\right)}{\mathrm{4}}} \right)=\mathrm{2}^{−\frac{{n}+\mathrm{1}}{\mathrm{2}}} \mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}\left({n}+\mathrm{1}\right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *