Menu Close

Question-144975




Question Number 144975 by mim24 last updated on 01/Jul/21
Answered by ArielVyny last updated on 01/Jul/21
∫u′×u^n du=(1/(n+1))u^(n+1) +cte  ∫(1+(1/x))(x+ln(x))dx=(1/2)(x+lnx)^2
u×undu=1n+1un+1+cte(1+1x)(x+ln(x))dx=12(x+lnx)2
Answered by som(math1967) last updated on 01/Jul/21
let (x+lnx)=z  (1+(1/x))dx=dz  ∫zdz=(z^2 /2)+C=(((x+lnx)^2 )/2) +C
let(x+lnx)=z(1+1x)dx=dzzdz=z22+C=(x+lnx)22+C
Answered by imjagoll last updated on 01/Jul/21
let u=x+ln x ⇒du=(1+(1/x))dx  I=∫u du=(u^2 /2)+c =(((x+ln x)^2 )/2)+c  = (((ln xe^x )^2 )/2)+c
letu=x+lnxdu=(1+1x)dxI=udu=u22+c=(x+lnx)22+c=(lnxex)22+c

Leave a Reply

Your email address will not be published. Required fields are marked *