Menu Close

Question-145164




Question Number 145164 by mim24 last updated on 02/Jul/21
Answered by mathmax by abdo last updated on 02/Jul/21
this question is solved see the platform
$$\mathrm{this}\:\mathrm{question}\:\mathrm{is}\:\mathrm{solved}\:\mathrm{see}\:\mathrm{the}\:\mathrm{platform} \\ $$
Commented by mim24 last updated on 02/Jul/21
you mad
$${you}\:{mad} \\ $$
Commented by mathmax by abdo last updated on 03/Jul/21
ni mad ni hmad  i am mathmax at this forum and its seems that  you crazy...!
$$\mathrm{ni}\:\mathrm{mad}\:\mathrm{ni}\:\mathrm{hmad}\:\:\mathrm{i}\:\mathrm{am}\:\mathrm{mathmax}\:\mathrm{at}\:\mathrm{this}\:\mathrm{forum}\:\mathrm{and}\:\mathrm{its}\:\mathrm{seems}\:\mathrm{that} \\ $$$$\mathrm{you}\:\mathrm{crazy}…! \\ $$
Answered by EDWIN88 last updated on 03/Jul/21
let ((x−x^(−1) )/(x+x^(−1) )) = cos y  ⇒((x^2 −1)/(x^2 +1)) = cos y  ⇒((x^2 +1−2)/(x^2 +1)) = cos y  ⇒1−2(x^2 +1)^(−1)  = cos y  ⇒2.2x.(x^2 +1)^(−2) = −sin y .(dy/dx)  ⇒((−4x)/((x^2 +1)^2 .sin y)) = (dy/dx)  ⇒((−4x)/((x^2 +1)^2  (√(1−(((x^2 −1)/(x^2 +1)))^2 )))) = (dy/dx)  ⇒(dy/dx) = ((−4x)/((x^2 +1)(√((x^2 +1)^2 −(x^2 −1)^2 ))))  (dy/dx) = ((−4x)/((x^2 +1)(√(4x^2 )))) = ((−4x)/((x^2 +1)∣2x∣))
$${let}\:\frac{{x}−{x}^{−\mathrm{1}} }{{x}+{x}^{−\mathrm{1}} }\:=\:\mathrm{cos}\:{y} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:=\:\mathrm{cos}\:{y} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{1}}\:=\:\mathrm{cos}\:{y} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{−\mathrm{1}} \:=\:\mathrm{cos}\:{y} \\ $$$$\Rightarrow\mathrm{2}.\mathrm{2}{x}.\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{−\mathrm{2}} =\:−\mathrm{sin}\:{y}\:.\frac{{dy}}{{dx}} \\ $$$$\Rightarrow\frac{−\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} .\mathrm{sin}\:{y}}\:=\:\frac{{dy}}{{dx}} \\ $$$$\Rightarrow\frac{−\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{\mathrm{1}−\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }}\:=\:\frac{{dy}}{{dx}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}\:=\:\frac{−\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{−\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{4}{x}^{\mathrm{2}} }}\:=\:\frac{−\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\mid\mathrm{2}{x}\mid} \\ $$
Answered by puissant last updated on 03/Jul/21
arccos(((x−(1/x))/(x+(1/x))))=arccos(((x^2 −1)/(x^2 +1)))  (d/dx)(arccos(((x^2 −1)/(x^2 +1))))=(((d/dx)(((x^2 −1)/(x^2 +1))))/( (√(1−(((x^2 −1)/(x^2 +1)))^2 ))))  =(((2x(x^2 +1)−2x(x^2 −1))/((x^2 +1)^2 ))/( (√(((x^2 +1)^2 −(x^2 −1)^2 )/((x^2 +1)^2 ))))) = (((4x)/((x^2 +1)))/( (√((x^2 +1−x^2 +1)(x^2 +1+x^2 −1)))))  =((4x)/((x^2 +1)))×(1/(2∣x∣))  ⇒ (d/dx)(cos^(−1) (((x−x^(−1) )/(x+x^(−1) ))))={_((2/(x^2 +1))    ,    x>0) ^(((−2)/(x^2 +1))     ,   x<0)
$$\mathrm{arccos}\left(\frac{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}}{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}\right)=\mathrm{arccos}\left(\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{arccos}\left(\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\right)=\frac{\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)}{\:\sqrt{\mathrm{1}−\left(\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\frac{\mathrm{2x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{2x}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }}{\:\sqrt{\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }}}\:=\:\frac{\frac{\mathrm{4x}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)}}{\:\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}} \\ $$$$=\frac{\mathrm{4x}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)}×\frac{\mathrm{1}}{\mathrm{2}\mid\mathrm{x}\mid} \\ $$$$\Rightarrow\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{x}−\mathrm{x}^{−\mathrm{1}} }{\mathrm{x}+\mathrm{x}^{−\mathrm{1}} }\right)\right)=\left\{_{\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:,\:\:\:\:\mathrm{x}>\mathrm{0}} ^{\frac{−\mathrm{2}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:\:,\:\:\:\mathrm{x}<\mathrm{0}} \right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *