Menu Close

Question-145290




Question Number 145290 by ArielVyny last updated on 04/Jul/21
Answered by ArielVyny last updated on 04/Jul/21
exercice 2 Nombre de Bell
$${exercice}\:\mathrm{2}\:{Nombre}\:{de}\:{Bell} \\ $$
Answered by Olaf_Thorendsen last updated on 04/Jul/21
1)  L′ensemble {1} a une partition :  {{1}}  L′ensemble {1,2} a 2 partitions :  {{1},{2}}   {{1,2}}  L′ensemble {1,2,3} a 5 partitions :  {{1},{2},{3}}  {{1,2},{3}}  {{1,3},{2}}  {{1},{2,3}}  {{1,2,3}}  π_1  = 1, π_2  = 2, π_3  = 5    2)  p∈{1,...,n} et Card(A_1 ) = p  Pour former A_1 , il s′agit de choisir  p elements distincts parmi les n de E.  Cela se fait de C_n ^p  facons.    3)  Il decoule de la question precedente :   π_n  = Σ_(k=0) ^(n−1) C_(n−1) ^k π_k   π_n  = Σ_(k=0) ^(n−1) C_(n−1) ^(n−k−1) π_k   et en changeant d′indice p = n−k  π_n  = Σ_(p=1) ^n C_(n−1) ^(p−1) π_(n−p)   4)  π_4  = C_3 ^0 π_3 +C_3 ^1 π_2 +C_3 ^2 π_1 +C_3 ^3 π_0   π_4  = (1×5)+(3×2)+(3×1)+(1×1)  π_4  = 5+6+3+1 = 15    π_5  = C_4 ^0 π_4 +C_4 ^1 π_3 +C_4 ^2 π_2 +C_4 ^3 π_1 +C_4 ^4 π_0   π_5  = (1×15)+(4×5)+(6×2)+(4×1)+(1×1)  π_5  = 15+20+12+4+1  π_5  = 52
$$\left.\mathrm{1}\right) \\ $$$$\mathrm{L}'\mathrm{ensemble}\:\left\{\mathrm{1}\right\}\:\mathrm{a}\:\mathrm{une}\:\mathrm{partition}\:: \\ $$$$\left\{\left\{\mathrm{1}\right\}\right\} \\ $$$$\mathrm{L}'\mathrm{ensemble}\:\left\{\mathrm{1},\mathrm{2}\right\}\:\mathrm{a}\:\mathrm{2}\:\mathrm{partitions}\:: \\ $$$$\left\{\left\{\mathrm{1}\right\},\left\{\mathrm{2}\right\}\right\} \\ $$$$\:\left\{\left\{\mathrm{1},\mathrm{2}\right\}\right\} \\ $$$$\mathrm{L}'\mathrm{ensemble}\:\left\{\mathrm{1},\mathrm{2},\mathrm{3}\right\}\:\mathrm{a}\:\mathrm{5}\:\mathrm{partitions}\:: \\ $$$$\left\{\left\{\mathrm{1}\right\},\left\{\mathrm{2}\right\},\left\{\mathrm{3}\right\}\right\} \\ $$$$\left\{\left\{\mathrm{1},\mathrm{2}\right\},\left\{\mathrm{3}\right\}\right\} \\ $$$$\left\{\left\{\mathrm{1},\mathrm{3}\right\},\left\{\mathrm{2}\right\}\right\} \\ $$$$\left\{\left\{\mathrm{1}\right\},\left\{\mathrm{2},\mathrm{3}\right\}\right\} \\ $$$$\left\{\left\{\mathrm{1},\mathrm{2},\mathrm{3}\right\}\right\} \\ $$$$\pi_{\mathrm{1}} \:=\:\mathrm{1},\:\pi_{\mathrm{2}} \:=\:\mathrm{2},\:\pi_{\mathrm{3}} \:=\:\mathrm{5} \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${p}\in\left\{\mathrm{1},…,{n}\right\}\:\mathrm{et}\:\mathrm{Card}\left(\mathrm{A}_{\mathrm{1}} \right)\:=\:{p} \\ $$$$\mathrm{Pour}\:\mathrm{former}\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{il}\:\mathrm{s}'\mathrm{agit}\:\mathrm{de}\:\mathrm{choisir} \\ $$$${p}\:\mathrm{elements}\:\mathrm{distincts}\:\mathrm{parmi}\:\mathrm{les}\:{n}\:\mathrm{de}\:\mathrm{E}. \\ $$$$\mathrm{Cela}\:\mathrm{se}\:\mathrm{fait}\:\mathrm{de}\:\mathrm{C}_{{n}} ^{{p}} \:\mathrm{facons}. \\ $$$$ \\ $$$$\left.\mathrm{3}\right) \\ $$$$\mathrm{Il}\:\mathrm{decoule}\:\mathrm{de}\:\mathrm{la}\:\mathrm{question}\:\mathrm{precedente}\::\: \\ $$$$\pi_{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{C}_{{n}−\mathrm{1}} ^{{k}} \pi_{{k}} \\ $$$$\pi_{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{C}_{{n}−\mathrm{1}} ^{{n}−{k}−\mathrm{1}} \pi_{{k}} \\ $$$$\mathrm{et}\:\mathrm{en}\:\mathrm{changeant}\:\mathrm{d}'\mathrm{indice}\:{p}\:=\:{n}−{k} \\ $$$$\pi_{{n}} \:=\:\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{C}_{{n}−\mathrm{1}} ^{{p}−\mathrm{1}} \pi_{{n}−{p}} \\ $$$$\left.\mathrm{4}\right) \\ $$$$\pi_{\mathrm{4}} \:=\:\mathrm{C}_{\mathrm{3}} ^{\mathrm{0}} \pi_{\mathrm{3}} +\mathrm{C}_{\mathrm{3}} ^{\mathrm{1}} \pi_{\mathrm{2}} +\mathrm{C}_{\mathrm{3}} ^{\mathrm{2}} \pi_{\mathrm{1}} +\mathrm{C}_{\mathrm{3}} ^{\mathrm{3}} \pi_{\mathrm{0}} \\ $$$$\pi_{\mathrm{4}} \:=\:\left(\mathrm{1}×\mathrm{5}\right)+\left(\mathrm{3}×\mathrm{2}\right)+\left(\mathrm{3}×\mathrm{1}\right)+\left(\mathrm{1}×\mathrm{1}\right) \\ $$$$\pi_{\mathrm{4}} \:=\:\mathrm{5}+\mathrm{6}+\mathrm{3}+\mathrm{1}\:=\:\mathrm{15} \\ $$$$ \\ $$$$\pi_{\mathrm{5}} \:=\:\mathrm{C}_{\mathrm{4}} ^{\mathrm{0}} \pi_{\mathrm{4}} +\mathrm{C}_{\mathrm{4}} ^{\mathrm{1}} \pi_{\mathrm{3}} +\mathrm{C}_{\mathrm{4}} ^{\mathrm{2}} \pi_{\mathrm{2}} +\mathrm{C}_{\mathrm{4}} ^{\mathrm{3}} \pi_{\mathrm{1}} +\mathrm{C}_{\mathrm{4}} ^{\mathrm{4}} \pi_{\mathrm{0}} \\ $$$$\pi_{\mathrm{5}} \:=\:\left(\mathrm{1}×\mathrm{15}\right)+\left(\mathrm{4}×\mathrm{5}\right)+\left(\mathrm{6}×\mathrm{2}\right)+\left(\mathrm{4}×\mathrm{1}\right)+\left(\mathrm{1}×\mathrm{1}\right) \\ $$$$\pi_{\mathrm{5}} \:=\:\mathrm{15}+\mathrm{20}+\mathrm{12}+\mathrm{4}+\mathrm{1} \\ $$$$\pi_{\mathrm{5}} \:=\:\mathrm{52} \\ $$
Commented by ArielVyny last updated on 04/Jul/21
thank sir
$${thank}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *