Question Number 145491 by Mrsof last updated on 05/Jul/21
Commented by Mrsof last updated on 05/Jul/21
$$\left.????????\right] \\ $$
Answered by puissant last updated on 05/Jul/21
$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\mathrm{e}^{\left(\mathrm{cos}\left(\mathrm{x}\right)−\mathrm{1}\right)\mathrm{ln}\left(\mathrm{tan}\left(\mathrm{x}\right)\right)} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}×\mathrm{x}} =\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}} =\mathrm{1} \\ $$$$\mathrm{True} \\ $$
Answered by mathmax by abdo last updated on 05/Jul/21
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{tanx}\right)^{\mathrm{cosx}−\mathrm{1}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\left(\mathrm{cosx}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{tanx}\right)} \\ $$$$\mathrm{cosx}\sim\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{cosx}−\mathrm{1}\sim−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\left(\mathrm{cosx}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{tanx}\right)\sim−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{log}\left(\mathrm{tanx}\right)\sim−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{logx}\:\rightarrow\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{0}} \:=\mathrm{1} \\ $$