Menu Close

Question-145573




Question Number 145573 by mnjuly1970 last updated on 06/Jul/21
Answered by Olaf_Thorendsen last updated on 06/Jul/21
p = half perimeter  p = (1/2)(1+2r+2+2r+3+2r) = 3(r+1)  p−a = 3(r+1)−(1+2r) = r+2  p−b = 3(r+1)−(2+2r) = r+1  p−c = 3(r+1)−(3+2r) = r  S = (√(p(p−a)(p−b)(p−c)))  S = (√(3(r+1)(r+2)(r+1)r))  S = (r+1)(√(3r(r+2)))    S_1  = (1/2)θ_1 r^2   S_2  = (1/2)θ_2 r^2   S_3  = (1/2)θ_3 r^2   S_1 +S_2 +S_3  = (1/2)(θ_1 +θ_2 +θ_3 )r^2  = (1/2)πr^2   ((S_1 +S_2 +S_3 )/S) = (((1/2)πr^2 )/( (r+1)(√(3r(r+2))))) = (π/6)  (r+1)(√(3r(r+2))) = 3r^2   (r+1)^2 3r(r+2) = 9r^4   (r+1)^2 (r+2) = 3r^3   (r^2 +2r+1)(r+2) = 3r^3   −2r^3 +4r^2 +5r+2 = 0  r ≈ 2,959
$${p}\:=\:{half}\:{perimeter} \\ $$$${p}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{2}{r}+\mathrm{2}+\mathrm{2}{r}+\mathrm{3}+\mathrm{2}{r}\right)\:=\:\mathrm{3}\left({r}+\mathrm{1}\right) \\ $$$${p}−{a}\:=\:\mathrm{3}\left({r}+\mathrm{1}\right)−\left(\mathrm{1}+\mathrm{2}{r}\right)\:=\:{r}+\mathrm{2} \\ $$$${p}−{b}\:=\:\mathrm{3}\left({r}+\mathrm{1}\right)−\left(\mathrm{2}+\mathrm{2}{r}\right)\:=\:{r}+\mathrm{1} \\ $$$${p}−{c}\:=\:\mathrm{3}\left({r}+\mathrm{1}\right)−\left(\mathrm{3}+\mathrm{2}{r}\right)\:=\:{r} \\ $$$${S}\:=\:\sqrt{{p}\left({p}−{a}\right)\left({p}−{b}\right)\left({p}−{c}\right)} \\ $$$${S}\:=\:\sqrt{\mathrm{3}\left({r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)\left({r}+\mathrm{1}\right){r}} \\ $$$${S}\:=\:\left({r}+\mathrm{1}\right)\sqrt{\mathrm{3}{r}\left({r}+\mathrm{2}\right)} \\ $$$$ \\ $$$${S}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\theta_{\mathrm{1}} {r}^{\mathrm{2}} \\ $$$${S}_{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\theta_{\mathrm{2}} {r}^{\mathrm{2}} \\ $$$${S}_{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\theta_{\mathrm{3}} {r}^{\mathrm{2}} \\ $$$${S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\theta_{\mathrm{1}} +\theta_{\mathrm{2}} +\theta_{\mathrm{3}} \right){r}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\pi{r}^{\mathrm{2}} \\ $$$$\frac{{S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} }{{S}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\pi{r}^{\mathrm{2}} }{\:\left({r}+\mathrm{1}\right)\sqrt{\mathrm{3}{r}\left({r}+\mathrm{2}\right)}}\:=\:\frac{\pi}{\mathrm{6}} \\ $$$$\left({r}+\mathrm{1}\right)\sqrt{\mathrm{3}{r}\left({r}+\mathrm{2}\right)}\:=\:\mathrm{3}{r}^{\mathrm{2}} \\ $$$$\left({r}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{3}{r}\left({r}+\mathrm{2}\right)\:=\:\mathrm{9}{r}^{\mathrm{4}} \\ $$$$\left({r}+\mathrm{1}\right)^{\mathrm{2}} \left({r}+\mathrm{2}\right)\:=\:\mathrm{3}{r}^{\mathrm{3}} \\ $$$$\left({r}^{\mathrm{2}} +\mathrm{2}{r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)\:=\:\mathrm{3}{r}^{\mathrm{3}} \\ $$$$−\mathrm{2}{r}^{\mathrm{3}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{5}{r}+\mathrm{2}\:=\:\mathrm{0} \\ $$$${r}\:\approx\:\mathrm{2},\mathrm{959} \\ $$
Commented by mnjuly1970 last updated on 06/Jul/21
thanks alot mr olaf
$${thanks}\:{alot}\:{mr}\:{olaf} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *