Menu Close

Question-145665




Question Number 145665 by phally last updated on 07/Jul/21
Answered by puissant last updated on 07/Jul/21
k′=2k−1 ⇒ 1≤k′≤2n−1  lim_(n→+∞) Σ_(k′=1) ^(2n−1) (2/(2n+k′ ))   =lim_(n→+∞) Σ_(k=1) ^n (2/(2n+k))+lim_(n→+∞) Σ_(k=n+1) ^(2n−1) (2/(2n+k))  =lim_(n→+∞) (1/n)Σ_(k=1) ^n (2/(2+((k/n))))+lim_(n→+∞) (1/n)Σ_(k=0) ^(n−1) (2/(2+((k/n))))  =2∫_0 ^1 (1/(2+x))dx+2∫_0 ^1 (1/(2+x))dx  =4∫_0 ^1 (1/(2+x))dx = 4[ln(2+x)]_0 ^1 =4(ln3−ln2)  ⇒lim_(n→+∞) Σ_(k=1) ^n (2/(2n+2k−1)) = 4ln((3/2))..
$$\mathrm{k}'=\mathrm{2k}−\mathrm{1}\:\Rightarrow\:\mathrm{1}\leqslant\mathrm{k}'\leqslant\mathrm{2n}−\mathrm{1} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}'=\mathrm{1}} {\overset{\mathrm{2n}−\mathrm{1}} {\sum}}\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{k}'\:}\: \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{k}}+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}=\mathrm{n}+\mathrm{1}} {\overset{\mathrm{2n}−\mathrm{1}} {\sum}}\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{k}} \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{2}}{\mathrm{2}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)}+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\frac{\mathrm{2}}{\mathrm{2}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}+\mathrm{x}}\mathrm{dx}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}+\mathrm{x}}\mathrm{dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}+\mathrm{x}}\mathrm{dx}\:=\:\mathrm{4}\left[\mathrm{ln}\left(\mathrm{2}+\mathrm{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{4}\left(\mathrm{ln3}−\mathrm{ln2}\right) \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{2k}−\mathrm{1}}\:=\:\mathrm{4ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right).. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *