Question Number 145879 by mathdanisur last updated on 09/Jul/21
Answered by mr W last updated on 09/Jul/21
$${let}\:{u}={f}\left({f}\left({x}\right)\right) \\ $$$${f}\left({u}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}−{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−{u}\leqslant\mathrm{0} \\ $$$$\Rightarrow{u}\geqslant\mathrm{1} \\ $$$${let}\:{v}={f}\left({x}\right) \\ $$$${u}={f}\left({v}\right)\geqslant\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}−{v}}{\mathrm{1}+{v}^{\mathrm{2}} }\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}−{v}\geqslant\mathrm{1}+{v}^{\mathrm{2}} \\ $$$$\Rightarrow{v}^{\mathrm{2}} +{v}\leqslant\mathrm{0} \\ $$$$\Rightarrow{v}\left({v}+\mathrm{1}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}\leqslant{v}\leqslant\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}\leqslant\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\leqslant\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}−{x}^{\mathrm{2}} \leqslant\mathrm{1}−{x}\leqslant\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}+\mathrm{2}\geqslant\mathrm{0}\:\wedge\:{x}\geqslant\mathrm{1} \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{2}\geqslant\mathrm{0}\:{is}\:{always}\:{true}. \\ $$$$\Rightarrow{x}\geqslant\mathrm{1}\:\Leftarrow\:{solution} \\ $$
Commented by iloveisrael last updated on 09/Jul/21
$$\mathrm{v}\left(\mathrm{v}+\mathrm{1}\right)\geqslant\mathrm{0}\Rightarrow\mathrm{v}\leqslant−\mathrm{1}\:\cup\:\mathrm{v}\geqslant\:\mathrm{0} \\ $$$$ \\ $$
Commented by iloveisrael last updated on 09/Jul/21
$$\mathrm{v}\:\leqslant−\mathrm{1}\:\cup\:\mathrm{v}\geqslant\mathrm{0} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\leqslant−\mathrm{1}\:\cup\:\mathrm{f}\left(\mathrm{x}\right)\geqslant\:\mathrm{0} \\ $$$$\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\leqslant−\mathrm{1}\:\cup\:\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{x}\leqslant−\mathrm{x}^{\mathrm{2}} −\mathrm{1}\:\cup\:\mathrm{1}−\mathrm{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} \underset{\mathrm{x}=\varnothing} {\underbrace{−\mathrm{x}+\mathrm{2}\leqslant\mathrm{0}}}\:\cup\:\mathrm{x}\leqslant\mathrm{1} \\ $$$$ \\ $$
Commented by mr W last updated on 09/Jul/21
$${no}\:{need}\:{to}\:{be}\:{so}\:{fast}\:{sir}! \\ $$$${you}\:{give}\:{comment}\:{so}\:{soon}\:{and}\:{i}\:{don}'{t} \\ $$$${even}\:{have}\:{some}\:{seconds}\:{to}\:{fix}\:{typos}… \\ $$$${try}\:{to}\:{understand}\:{at}\:{first}\:{what}\:{i}\:{did}. \\ $$$${i}\:{let}\:{u}={f}\left({f}\left({x}\right)\right),\:{then} \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\geqslant\mathrm{0}\:{means}\:{f}\left({u}\right)\geqslant\mathrm{0},\:{i}.{e}.\right. \\ $$$$\frac{\mathrm{1}−{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\geqslant\mathrm{0} \\ $$$$….. \\ $$
Commented by mr W last updated on 09/Jul/21
Commented by mr W last updated on 09/Jul/21
$${now}\:{it}'{s}\:{complete}\:{with}\:{my}\:{working}. \\ $$$${now}\:{you}\:{can}\:{begin}\:{to}\:{check}. \\ $$
Commented by iloveisrael last updated on 09/Jul/21
$$\mathrm{chek}\:\mathrm{your}\:\mathrm{working} \\ $$$$\mathrm{you}\:\mathrm{write}\:\mathrm{v}^{\mathrm{2}} +\mathrm{v}\:\geqslant\:\mathrm{0}\: \\ $$$$\mathrm{and}\:−\mathrm{1}\leqslant\mathrm{v}\leqslant\mathrm{0}\:?\:\mathrm{is}\:\mathrm{it}\:\mathrm{correct}\:? \\ $$$$\mathrm{hmm}.. \\ $$
Commented by mr W last updated on 09/Jul/21
$${i}\:{have}\:{said}\:{you}\:{were}\:{to}\:{fast}\:{with}\:{your} \\ $$$${comment}.\:{you}\:{commented}\:{before}\:{i} \\ $$$${fixed}\:{my}\:{typos}.\:{v}^{\mathrm{2}} +{v}\geqslant\mathrm{0}\:{was}\:{typo}.\:{it}\:{is} \\ $$$${in}\:{fact}\:{v}^{\mathrm{2}} +{v}\leqslant\mathrm{0}.\:{if}\:{you}\:{check}\:{thoroughly}, \\ $$$${you}\:{have}\:{had}\:{known}\:{that}\:{it}\:{is}\:{a}\:{typo}. \\ $$
Commented by mr W last updated on 09/Jul/21
$${besides}\:{i}\:{showed}\:{with}\:{the}\:{graph}\:{that} \\ $$$${my}\:{answer}\:{is}\:{correct}. \\ $$
Commented by mathdanisur last updated on 09/Jul/21
$${alot}\:{cool}\:{Ser},\:{thankyou} \\ $$