Menu Close

Question-14590




Question Number 14590 by Tinkutara last updated on 02/Jun/17
Answered by mrW1 last updated on 03/Jun/17
sin y≥sin x−cos α cos x  sin y≥(√(1+cos^2  α))×((1/( (√(1+cos^2  α))))×sin x−((cos α)/( (√(1+cos^2  α)))) ×cos x)  sin y≥(√(1+cos^2  α))(cos θ×sin x−sin θ ×cos x)  with θ=cos^(−1)  ((1/( (√(1+cos^2  α))))) = sin^(−1)  (((cos α)/( (√(1+cos^2  α)))))  sin y≥(√(1+cos^2  α))×sin (x−θ)≤(√(1+cos^2  α))≥1≤1  the only solution is when “=” sign is taken.  ⇒cos α=0 and sin y=1  or  ⇒sin α=±1 and sin y=1  Σ(sin α+sin y)=1+1+(−1)+1=2
sinysinxcosαcosxsiny1+cos2α×(11+cos2α×sinxcosα1+cos2α×cosx)siny1+cos2α(cosθ×sinxsinθ×cosx)withθ=cos1(11+cos2α)=sin1(cosα1+cos2α)siny1+cos2α×sin(xθ)1+cos2α11theonlysolutioniswhen=signistaken.cosα=0andsiny=1orsinα=±1andsiny=1Σ(sinα+siny)=1+1+(1)+1=2
Commented by prakash jain last updated on 03/Jun/17
Thank You!
ThankYou!
Commented by Tinkutara last updated on 04/Jun/17
Thanks Sir!
ThanksSir!
Commented by Tinkutara last updated on 04/Jun/17
It can also be written in 2^(nd)  line that  sin y ≥ (√(1 + cos^2 α)) because maximum  value of sin x − cos α cos x is  (√(1 + cos^2 α)) .
Itcanalsobewrittenin2ndlinethatsiny1+cos2αbecausemaximumvalueofsinxcosαcosxis1+cos2α.

Leave a Reply

Your email address will not be published. Required fields are marked *