Question-146106 Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 146106 by smallEinstein last updated on 10/Jul/21 Answered by Olaf_Thorendsen last updated on 11/Jul/21 Ω=∫0121+3(x+1)2(1−x)64dxLetx=cos2uΩ=∫π4π61+3(cos2u+1)2(1−cos2u)64(−2sin2udu)Ω=2∫π6π41+3(2cos2u)2(2sin2u)64sin2uduΩ=∫π6π41+3cosusin3usinucosuduΩ=∫π6π41+3sin2uduΩ=(1+3)[−cotu]π6π4Ω=(1+3)(3−1)Ω=2 Answered by gsk2684 last updated on 11/Jul/21 ∫1201+3(x+1)12(1−x)32dx∫1201+3(x+1)2(1−x1+x)32dx,put1−x1+x=t⇒−2(1+x)2dx=dt∫1311+3t32dt−2=−12(1+3)[t−12−12]113=(1+3)(113−1)=2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-by-mathmatical-indiction-5-7-9-4n-1-2n-2-3n-Next Next post: x-1-2x-2-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.