Menu Close

Question-146106




Question Number 146106 by smallEinstein last updated on 10/Jul/21
Answered by Olaf_Thorendsen last updated on 11/Jul/21
Ω = ∫_0 ^(1/2) ((1+(√3))/( (((x+1)^2 (1−x)^6 ))^(1/4) )) dx  Let x = cos2u  Ω = ∫_(π/4) ^(π/6) ((1+(√3))/( (((cos2u+1)^2 (1−cos2u)^6 ))^(1/4) )) (−2sin2udu)  Ω = 2∫_(π/6) ^(π/4) ((1+(√3))/( (((2cos^2 u)^2 (2sin^2 u)^6 ))^(1/4) )) sin2udu  Ω = ∫_(π/6) ^(π/4) ((1+(√3))/( cosusin^3 u)) sinucosudu  Ω = ∫_(π/6) ^(π/4) ((1+(√3))/( sin^2 u)) du  Ω = (1+(√3))[−cotu]_(π/6) ^(π/4)   Ω = (1+(√3))((√3)−1)  Ω = 2
Ω=0121+3(x+1)2(1x)64dxLetx=cos2uΩ=π4π61+3(cos2u+1)2(1cos2u)64(2sin2udu)Ω=2π6π41+3(2cos2u)2(2sin2u)64sin2uduΩ=π6π41+3cosusin3usinucosuduΩ=π6π41+3sin2uduΩ=(1+3)[cotu]π6π4Ω=(1+3)(31)Ω=2
Answered by gsk2684 last updated on 11/Jul/21
∫_0 ^(1/2) ((1+(√3))/((x+1)^(1/2) (1−x)^(3/2) ))dx  ∫_0 ^(1/2) ((1+(√3))/((x+1)^2 (((1−x)/(1+x)))^(3/2) ))dx, put ((1−x)/(1+x))=t⇒((−2)/((1+x)^2 ))dx=dt  ∫_1 ^(1/3) ((1+(√3))/t^(3/2) )(dt/(−2))=((−1)/2)(1+(√3))[(t^((−1)/2) /((−1)/2))]_1 ^(1/3)   =(1+(√3))((1/( (√(1/3))))−1)=2
1201+3(x+1)12(1x)32dx1201+3(x+1)2(1x1+x)32dx,put1x1+x=t2(1+x)2dx=dt1311+3t32dt2=12(1+3)[t1212]113=(1+3)(1131)=2

Leave a Reply

Your email address will not be published. Required fields are marked *