Menu Close

Question-147252




Question Number 147252 by mathlove last updated on 19/Jul/21
Answered by Olaf_Thorendsen last updated on 19/Jul/21
l = ((1/5)+((1/5)+((1/5)+...)^2 )^2 )^2   l = ((1/5)+l)^2   l^2 −(3/5)l+(1/(25)) = 0  l = (((3/5)±(√((9/(25))−4×1×(1/(25)))))/2)  l = (((3/5)±(1/( (√5))))/2) = (1/(10))(3±(√5))  l>((1/5))^2  = 0,25 ⇒ (1/(10))(3−(√5)) impossible  l = (1/(10))(3+(√5))  X = 3−10l = −(√5)
$${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+…\right)^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+{l}\right)^{\mathrm{2}} \\ $$$${l}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{5}}{l}+\frac{\mathrm{1}}{\mathrm{25}}\:=\:\mathrm{0} \\ $$$${l}\:=\:\frac{\frac{\mathrm{3}}{\mathrm{5}}\pm\sqrt{\frac{\mathrm{9}}{\mathrm{25}}−\mathrm{4}×\mathrm{1}×\frac{\mathrm{1}}{\mathrm{25}}}}{\mathrm{2}} \\ $$$${l}\:=\:\frac{\frac{\mathrm{3}}{\mathrm{5}}\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{3}\pm\sqrt{\mathrm{5}}\right) \\ $$$${l}>\left(\frac{\mathrm{1}}{\mathrm{5}}\right)^{\mathrm{2}} \:=\:\mathrm{0},\mathrm{25}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)\:\mathrm{impossible} \\ $$$${l}\:=\:\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{3}+\sqrt{\mathrm{5}}\right) \\ $$$$\mathrm{X}\:=\:\mathrm{3}−\mathrm{10}{l}\:=\:−\sqrt{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *