Question Number 147795 by ajfour last updated on 23/Jul/21
Commented by ajfour last updated on 23/Jul/21
$${Find}\:{b}/{a}. \\ $$
Commented by mr W last updated on 24/Jul/21
$${very}\:{nice}\:{question}! \\ $$$${i}\:{have}\:{tried}\:{to}\:{find}\:{an}\:{answer}.\:{but} \\ $$$${it}'{s}\:{not}\:{so}\:{easy}\:{to}\:{me}. \\ $$
Answered by mr W last updated on 23/Jul/21
Commented by mr W last updated on 24/Jul/21
$${y}_{{A}} ={b}−{s} \\ $$$${x}_{{C}} =\left({a}+{s}\right)\mathrm{cos}\:\theta \\ $$$${y}_{{C}} =\left({a}+{s}\right)\mathrm{sin}\:\theta \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$${u}=\frac{{ds}}{{dt}} \\ $$$${u}_{{A}} =−\frac{{dy}_{{A}} }{{dt}}={u} \\ $$$${a}_{{A}} =\frac{{du}_{{A}} }{{dt}}=\frac{{du}}{{dt}} \\ $$$${T}−{mg}={ma}_{{A}} \\ $$$$\Rightarrow{T}={m}\left({a}_{{A}} +{g}\right) \\ $$$${u}_{{Cx}} =−\frac{{dx}_{{C}} }{{dt}}=\left({a}+{s}\right)\omega\mathrm{sin}\:\theta−{u}\mathrm{cos}\:\theta \\ $$$${a}_{{Cx}} ={u}\omega\mathrm{sin}\:\theta+\left({a}+{s}\right)\alpha\mathrm{sin}\:\theta+\left({a}+{s}\right)\omega^{\mathrm{2}} \mathrm{cos}\:\theta−{a}_{{A}} \mathrm{cos}\:\theta+{u}\omega\mathrm{sin}\:\theta \\ $$$${u}_{{Cy}} =\frac{{dy}_{{C}} }{{dt}}=\left({a}+{s}\right)\omega\mathrm{cos}\:\theta+{u}\mathrm{sin}\:\theta \\ $$$${a}_{{Cy}} ={u}\omega\mathrm{cos}\:\theta+\left({a}+{s}\right)\alpha\mathrm{cos}\:\theta−\left({a}+{s}\right)\omega^{\mathrm{2}} \mathrm{sin}\:\theta+{a}_{{A}} \mathrm{sin}\:\theta+{u}\omega\mathrm{cos}\:\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{m}\left[{u}^{\mathrm{2}} +\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{u}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\left({a}+{s}\right)\omega{u}\mathrm{sin}\:\theta\mathrm{cos}\:\theta+\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{u}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{2}\left({a}+{s}\right)\omega{u}\mathrm{cos}\:\theta\mathrm{sin}\:\theta\right]={mg}\left[\left({a}+{s}\right)\mathrm{sin}\:\theta−{s}\right] \\ $$$$\Rightarrow\mathrm{2}{u}^{\mathrm{2}} +\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} =\mathrm{2}{g}\left[\left({a}+{s}\right)\mathrm{sin}\:\theta−{s}\right]\:\:\:…\left({i}\right) \\ $$$${T}\mathrm{cos}\:\theta={ma}_{{Cx}} \\ $$$$\left({a}_{{A}} +{g}\right)\mathrm{cos}\:\theta={u}\omega\mathrm{sin}\:\theta+\left({a}+{s}\right)\alpha\mathrm{sin}\:\theta+\left({a}+{s}\right)\omega^{\mathrm{2}} \mathrm{cos}\:\theta−{a}_{{A}} \mathrm{cos}\:\theta+{u}\omega\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{2}{a}_{{A}} +{g}=\mathrm{2}{u}\omega\mathrm{tan}\:\theta+\left({a}+{s}\right)\alpha\mathrm{tan}\:\theta+\left({a}+{s}\right)\omega^{\mathrm{2}} \\ $$$${mg}−{T}\mathrm{sin}\:\theta={ma}_{{Cy}} \\ $$$$\Rightarrow\mathrm{2}{a}_{{A}} +{g}=\frac{\mathrm{1}}{\mathrm{tan}\:\theta}\left[{g}−\mathrm{2}{u}\omega−\left({a}+{s}\right)\alpha\right]+\left({a}+{s}\right)\omega^{\mathrm{2}} \\ $$$$\mathrm{2}{u}\omega\mathrm{tan}\:\theta+\left({a}+{s}\right)\alpha\mathrm{tan}\:\theta+\left({a}+{s}\right)\omega^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{tan}\:\theta}\left[{g}−\mathrm{2}{u}\omega−\left({a}+{s}\right)\alpha\right]+\left({a}+{s}\right)\omega^{\mathrm{2}} \\ $$$$\left[\mathrm{2}{u}\omega+\left({a}+{s}\right)\alpha\right]\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)={g} \\ $$$$\Rightarrow\mathrm{2}{u}\omega+\left({a}+{s}\right)\alpha={g}\mathrm{cos}^{\mathrm{2}} \:\theta\:\:\:…\left({ii}\right) \\ $$$$\alpha=\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$${from}\:\left({i}\right): \\ $$$${u}=\sqrt{{g}\left[\left({a}+{s}\right)\mathrm{sin}\:\theta−{s}\right]−\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{ds}}{{d}\theta}=\frac{\mathrm{1}}{\omega}\sqrt{{g}\left[\left({a}+{s}\right)\mathrm{sin}\:\theta−{s}\right]−\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} } \\ $$$${from}\:\left({ii}\right): \\ $$$$\Rightarrow\frac{{d}\omega}{{d}\theta}=\frac{{g}\mathrm{cos}^{\mathrm{2}} \:\theta}{\omega\left({a}+{s}\right)}−\frac{\mathrm{2}}{{a}+{s}}\sqrt{{g}\left[\left({a}+{s}\right)\mathrm{sin}\:\theta−{s}\right]−\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{s}\right)^{\mathrm{2}} \omega^{\mathrm{2}} } \\ $$$$…… \\ $$$${s}\left(\theta\right)\mid_{\theta=\mathrm{0}} =\mathrm{0} \\ $$$$\omega\left(\theta\right)\mid_{\theta=\mathrm{0}} =\mathrm{0} \\ $$$${s}\left(\theta\right)\mid_{\theta=\frac{\pi}{\mathrm{2}}} =\frac{{b}−{a}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 25/Jul/21
$${mgr}\mathrm{cos}\:\theta=\left({mr}^{\mathrm{2}} \right)\frac{\omega{d}\omega}{{d}\theta}\:\:…\left({i}\right) \\ $$$$ \\ $$$${mgr}\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}{m}\left({v}^{\mathrm{2}} +{v}^{\mathrm{2}} \right) \\ $$$$\:+\frac{\mathrm{1}}{\mathrm{2}}{m}\left(\omega{r}\right)^{\mathrm{2}} +{mg}\left({a}+{b}−{r}\right)\:\:..\left({ii}\right) \\ $$$${v}=\frac{{dr}}{{dt}}=\frac{\omega{dr}}{{d}\theta}\:\:\:\:…\left({iii}\right) \\ $$$${L}={a}+{b} \\ $$$$\Rightarrow \\ $$$$\mathrm{2}{g}\left({r}\mathrm{sin}\:\theta+{r}−{L}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\frac{\omega{dr}}{{d}\theta}\right)^{\mathrm{2}} +\left(\omega{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\omega^{\mathrm{2}} =\frac{\mathrm{2}{g}\left({r}\mathrm{sin}\:\theta+{r}−{L}\right)}{\mathrm{2}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}\omega{d}\omega}{{d}\theta}=\frac{\mathrm{2}{g}\left(\frac{{dr}}{{d}\theta}\mathrm{sin}\:\theta+{r}\mathrm{cos}\:\theta+\frac{{dr}}{{d}\theta}\right)\left\{\mathrm{2}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \right\}−\mathrm{2}{g}\left({r}\mathrm{sin}\:\theta+{r}−{L}\right)\left\{\mathrm{4}\left(\frac{{dr}}{{d}\theta}\right)\left(\frac{{d}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }\right)+\mathrm{2}{r}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \right\}}{\left\{\mathrm{2}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \right\}^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\mathrm{2}{g}\mathrm{cos}\:\theta}{{r}} \\ $$$$\Rightarrow \\ $$$$\left(\frac{{rdr}}{{d}\theta}\right)\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$$+{r}^{\mathrm{2}} \mathrm{cos}\:\theta\left\{\mathrm{2}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \right\} \\ $$$$−\left({r}^{\mathrm{2}} \mathrm{sin}\:\theta+{r}^{\mathrm{2}} −{Lr}\right)\left\{\mathrm{4}\left(\frac{{dr}}{{d}\theta}\right)\left(\frac{{d}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }\right)+\mathrm{2}{r}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:=\:\:\mathrm{cos}\:\theta\left\{\mathrm{2}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \right\}^{\mathrm{2}} \\ $$$${difficult}\:{D}.{E}.\:,\:{sir}. \\ $$