Menu Close

Question-147811




Question Number 147811 by mathdanisur last updated on 23/Jul/21
Answered by Olaf_Thorendsen last updated on 23/Jul/21
X = sin(((arccosx)/4))  ⇒ X^2  = sin^2 (((arccosx)/4))  X^2  = (1/2)(1−cos(2×((arccosx)/4)))  X^2  = (1/2)(1−cos(((arccosx)/2)))  0 ≤ arccosx ≤ π ⇒ 0 ≤ ((arccosx)/2) ≤ (π/2)  X^2  = (1/2)(1−(√(cos^2 (((arccosx)/2)))))  X^2  = (1/2)(1−(√((1/2)(1+cos(2×((arccosx)/2)))))  X^2  = (1/2)(1−(√((1/2)(1+x))))  X =+ (√((1/2)(1−(√((x+1)/2)))))
$$\mathrm{X}\:=\:\mathrm{sin}\left(\frac{\mathrm{arccos}{x}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\mathrm{X}^{\mathrm{2}} \:=\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{arccos}{x}}{\mathrm{4}}\right) \\ $$$$\mathrm{X}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\left(\mathrm{2}×\frac{\mathrm{arccos}{x}}{\mathrm{4}}\right)\right) \\ $$$$\mathrm{X}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\left(\frac{\mathrm{arccos}{x}}{\mathrm{2}}\right)\right) \\ $$$$\mathrm{0}\:\leqslant\:\mathrm{arccos}{x}\:\leqslant\:\pi\:\Rightarrow\:\mathrm{0}\:\leqslant\:\frac{\mathrm{arccos}{x}}{\mathrm{2}}\:\leqslant\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{X}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\mathrm{cos}^{\mathrm{2}} \left(\frac{\mathrm{arccos}{x}}{\mathrm{2}}\right)}\right) \\ $$$$\mathrm{X}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\left(\mathrm{2}×\frac{\mathrm{arccos}{x}}{\mathrm{2}}\right)\right.}\right) \\ $$$$\mathrm{X}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{x}\right)}\right) \\ $$$$\mathrm{X}\:=+\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\frac{{x}+\mathrm{1}}{\mathrm{2}}}\right)} \\ $$
Commented by mathdanisur last updated on 23/Jul/21
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *