Menu Close

Question-148082




Question Number 148082 by tabata last updated on 25/Jul/21
Commented by tabata last updated on 25/Jul/21
help me msr olaf
helpmemsrolaf
Answered by Olaf_Thorendsen last updated on 25/Jul/21
f(z) = ((z+4)/(z^2 (z^2 +3z+2))), ∣z∣ > 2  f(z) = ((z+4)/(z^2 (z+1)(z+2)))  f(z) = (2/z^2 )−(5/(2z)).+(3/(z+1))−(1/(2(z+2)))  f(z) = (2/z^2 )−(5/(2z))+(3/z).(1/(1+(1/z)))−(1/(2z)).(1/(1+(2/z)))  f(z) = (2/z^2 )−(5/(2z))+(3/z)Σ_(n=0) ^∞ (((−1)^n )/z^n )−(1/(2z)).Σ_(n=0) ^∞ (−1)^n (2^n /z^n )  f(z) = (2/z^2 )−(5/(2z))+Σ_(n=0) ^∞ (−1)^n (3−2^(n−1) )(1/z^(n+1) )  f(z) = (2/z^2 )−(5/(2z))−Σ_(n=1) ^∞ (−1)^n (3−2^(n−2) )(1/z^n )  f(z) = −(1/z^2 )−Σ_(n=3) ^∞ (−1)^n (3−2^(n−2) )(1/z^n )  (if ∣z∣ >  2)
f(z)=z+4z2(z2+3z+2),z>2f(z)=z+4z2(z+1)(z+2)f(z)=2z252z.+3z+112(z+2)f(z)=2z252z+3z.11+1z12z.11+2zf(z)=2z252z+3zn=0(1)nzn12z.n=0(1)n2nznf(z)=2z252z+n=0(1)n(32n1)1zn+1f(z)=2z252zn=1(1)n(32n2)1znf(z)=1z2n=3(1)n(32n2)1zn(ifz>2)
Commented by tabata last updated on 25/Jul/21
put sir (3/(z+1)) is converg ajust ∣z∣<1 how     Σ_(n=0) ^∞ (−1)^n ((1/z))^(n )
putsir3z+1isconvergajustz∣<1hown=0(1)n(1z)n
Commented by tabata last updated on 25/Jul/21
i think =Σ_(n=0) ^∞ (−1)^n (z)^n
ithink=n=0(1)n(z)n
Commented by qaz last updated on 25/Jul/21
∣z∣>2   ⇒(1/(∣z∣))<(2/(∣z∣))<1
z∣>21z<2z<1
Commented by mathmax by abdo last updated on 25/Jul/21
f(z)=((z+4)/(z^2 (z^2 +3z+2)))=((z+4)/z^2 )((1/(z+1))−(1/(z+2)))  =(1/z^2 )(((z+4)/(z+1))−((z+4)/(z+2)))=(1/z^2 )(1+(3/(z+1))−1−(2/(z+2)))  =(3/(z^2 (z+1)))−(2/(z^2 (z+2)))  we have ∣z∣>2 ⇒∣(1/z)∣<(1/2) and ∣(2/z)∣<1  f(z)=(3/(z^3 (1+(1/z))))−(2/(z^3 (1+(2/z))))  =(3/z^3 )Σ_(n=0) ^∞  (((−1)^n )/z^n )−(2/z^3 )Σ_(n=0) ^(∞ )  (−1)^n ((2/z))^n   =3Σ_(n=0) ^∞    (((−1)^n )/z^(n+3) )−2 Σ_(n=0) ^∞  (((−2)^n )/z^(n+3) )  =Σ_(n=0) ^∞ (−1)^n +(−2)^(n+1) )×(1/z^(n+3) )
f(z)=z+4z2(z2+3z+2)=z+4z2(1z+11z+2)=1z2(z+4z+1z+4z+2)=1z2(1+3z+112z+2)=3z2(z+1)2z2(z+2)wehavez∣>2⇒∣1z∣<12and2z∣<1f(z)=3z3(1+1z)2z3(1+2z)=3z3n=0(1)nzn2z3n=0(1)n(2z)n=3n=0(1)nzn+32n=0(2)nzn+3=n=0(1)n+(2)n+1)×1zn+3

Leave a Reply

Your email address will not be published. Required fields are marked *