Menu Close

Question-148090




Question Number 148090 by mathdanisur last updated on 25/Jul/21
Commented by Rasheed.Sindhi last updated on 25/Jul/21
∠B=75°×2=150°
$$\angle{B}=\mathrm{75}°×\mathrm{2}=\mathrm{150}° \\ $$
Commented by mathdanisur last updated on 25/Jul/21
Thank you Ser, but how.?
$${Thank}\:{you}\:{Ser},\:{but}\:{how}.? \\ $$
Answered by Rasheed.Sindhi last updated on 25/Jul/21
Join O to B & C  △AOB:  ∵OA=OB  [radii of same circle]  ∴ ∠A=∠ABO=75° [opposite angles of conguent sides]  △ABO↔△CBO       AB=CB (given)       AO=CO  [radii of same circle]        BO=BO [common side]  ∴△ABO≅△CBO [SSS≅SSS]    ∴∠ABO=∠CBO=75°[corresponding angles of congruent triangles]       ∠ABC=∠ABO+∠CBO                        =75°+75°=150°          ∠B=150°
$${Join}\:{O}\:{to}\:{B}\:\&\:{C} \\ $$$$\bigtriangleup{AOB}: \\ $$$$\because{OA}={OB}\:\:\left[{radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\therefore\:\angle{A}=\angle{ABO}=\mathrm{75}°\:\left[{opposite}\:{angles}\:{of}\:{conguent}\:{sides}\right] \\ $$$$\bigtriangleup{ABO}\leftrightarrow\bigtriangleup{CBO} \\ $$$$\:\:\:\:\:{AB}={CB}\:\left({given}\right) \\ $$$$\:\:\:\:\:{AO}={CO}\:\:\left[{radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\:\:\:\:\:\:{BO}={BO}\:\left[{common}\:{side}\right] \\ $$$$\therefore\bigtriangleup{ABO}\cong\bigtriangleup{CBO}\:\left[{SSS}\cong{SSS}\right] \\ $$$$\:\:\therefore\angle{ABO}=\angle{CBO}=\mathrm{75}°\left[{corresponding}\:{angles}\:{of}\:{congruent}\:{triangles}\right] \\ $$$$\:\:\:\:\:\angle{ABC}=\angle{ABO}+\angle{CBO} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{75}°+\mathrm{75}°=\mathrm{150}° \\ $$$$\:\:\:\:\:\:\:\:\angle{B}=\mathrm{150}° \\ $$
Commented by mathdanisur last updated on 25/Jul/21
Thank you Ser, but answer: 105°
$${Thank}\:{you}\:{Ser},\:{but}\:{answer}:\:\mathrm{105}° \\ $$
Commented by Rasheed.Sindhi last updated on 25/Jul/21
105° is not correct.
$$\mathrm{105}°\:{is}\:{not}\:{correct}. \\ $$
Commented by mathdanisur last updated on 25/Jul/21
Good thank you Sir cool
$${Good}\:{thank}\:{you}\:{Sir}\:{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *