Question Number 148118 by mathdanisur last updated on 25/Jul/21
Answered by liberty last updated on 25/Jul/21
Commented by liberty last updated on 25/Jul/21
$${AM}=\sqrt{\mathrm{12}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }\:=\sqrt{\mathrm{16}×\mathrm{8}}=\mathrm{8}\sqrt{\mathrm{2}} \\ $$$$\Leftrightarrow\:\mathrm{cos}\:\theta\:=\:\frac{\mathrm{4}}{\mathrm{12}}\:=\:\frac{\mathrm{7}}{\mathrm{4}+{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{7}}{\mathrm{4}+{x}}\:\Rightarrow\mathrm{4}+{x}=\mathrm{21} \\ $$$$\Rightarrow{x}=\mathrm{17}\:=\:{BM} \\ $$
Commented by mathdanisur last updated on 25/Jul/21
$${thank}\:{you}\:{Ser} \\ $$
Answered by Olaf_Thorendsen last updated on 25/Jul/21
$$\mathrm{AM}^{\mathrm{2}} \:=\:\mathrm{AC}^{\mathrm{2}} −\mathrm{MC}^{\mathrm{2}} \\ $$$$\mathrm{AM}^{\mathrm{2}} \:=\:\left(\mathrm{5}+\mathrm{7}\right)^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} \:=\:\mathrm{144}−\mathrm{16}\:=\:\mathrm{128} \\ $$$$\mathrm{AM}\:=\:\mathrm{8}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{tan}\overset{\wedge} {\mathrm{C}}\:=\:\frac{\mathrm{AM}}{\mathrm{MC}}\:=\:\frac{\mathrm{BN}}{\mathrm{NC}} \\ $$$$\frac{\mathrm{8}\sqrt{\mathrm{2}}}{\mathrm{4}}\:=\:\frac{\mathrm{BN}}{\mathrm{7}}\:\Rightarrow\:\mathrm{BN}\:=\:\mathrm{14}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{tan}\overset{\wedge} {\mathrm{A}}\:=\:\frac{\mathrm{BN}}{\mathrm{AN}}\:=\:\frac{\mathrm{14}\sqrt{\mathrm{2}}}{\mathrm{5}} \\ $$$$\mathrm{tan}\left(\mathrm{MAC}\right)\:=\:\frac{\mathrm{MC}}{\mathrm{AM}}\:=\:\frac{\mathrm{4}}{\mathrm{8}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\mathrm{tan}\left(\mathrm{BAM}\right)\:=\:\mathrm{tan}\left(\overset{\wedge} {\mathrm{A}}−\mathrm{MAC}\right) \\ $$$$\mathrm{tan}\left(\mathrm{BAM}\right)\:=\:\frac{\mathrm{tan}\overset{\wedge} {\mathrm{A}}−\mathrm{tan}\left(\mathrm{MAC}\right)}{\mathrm{1}+\mathrm{tan}\overset{\wedge} {\mathrm{A}}.\mathrm{tan}\left(\mathrm{MAC}\right)} \\ $$$$\mathrm{tan}\left(\mathrm{BAM}\right)\:=\:\frac{\frac{\mathrm{14}\sqrt{\mathrm{2}}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{1}+\frac{\mathrm{14}\sqrt{\mathrm{2}}}{\mathrm{5}}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:\frac{\mathrm{17}}{\mathrm{8}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{tan}\left(\mathrm{BAM}\right)\:=\:\frac{\mathrm{BM}}{\mathrm{AM}} \\ $$$$\frac{\mathrm{17}}{\mathrm{8}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{BM}}{\mathrm{8}\sqrt{\mathrm{2}}}\:\Rightarrow\mathrm{BM}\:=\:\mathrm{17} \\ $$
Commented by mathdanisur last updated on 25/Jul/21
$${Thank}\:{you}\:{Ser} \\ $$